
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 128–159. DOI:10.46586/tches.v2025.i1.128-159

Trace Copilot: Automatically Locating
Cryptographic Operations in Side-Channel
Traces by Firmware Binary Instrumenting

Shipei Qu1,2, Yuxuan Wang1,2, Jintong Yu1,2, Chi Zhang1,2�, Dawu Gu1,2�

1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China {zcsjtu,dwgu}@sjtu.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China

Abstract. A common assumption in side-channel analysis is that the attacker knows
the cryptographic algorithm implementation of the victim. However, many lab-
setting studies implicitly extend this assumption to the knowledge of the source
code, by inserting triggers to measure, locate or align the Cryptographic Operations
(CO) in the trace. For real-world attacks, the source code is typically unavailable,
which poses a challenge for locating the COs thus reducing the effectiveness of many
methods. In contrast, obtaining the (partial) binary firmware is more prevalent in
practical attacks on embedded devices. While binary code theoretically encapsulates
necessary information for side-channel attacks on software-implemented cryptographic
algorithms, there is no systematic study on leveraging this information to facilitate
side-channel analysis. This paper introduces a novel and general framework that
utilizes binary information for the automated locating of COs on side-channel traces.
We first present a mechanism that maps the execution flow of binary instructions onto
the corresponding side-channel trace through a tailored static binary instrumentation
process, thereby transforming the challenge of locating COs into one of tracing
cryptographic code execution within the binary. For the latter, we propose a method to
retrieve binary instruction addresses that are equivalent to the segmenting boundaries
of the COs within side-channel traces. By identifying the mapping points of these
instructions on the trace, we can obtain accurate segmentation labeling for the side-
channel data. Further, by employing the well-labeled side-channel segments obtained
on a profiling device, we can readily identify the locations of COs within traces
collected from un-controllable target devices. We evaluate our approach on various
devices and cryptographic software, including a real-world secure boot program. The
results demonstrate the effectiveness of our method, which can automatically locate
typical COs, such as AES or ECDSA, in raw traces using only the binary firmware and
a profiling device. Comparison experiments indicate that our method outperforms
existing techniques in handling noisy or jittery traces and scales better to complex
COs. Performance evaluation confirms that the runtime and storage overheads of
the proposed approach are practical for real-world deployment.
Keywords: Side-channel analysis · Software/Hardware co-analysis · Binary instru-
mentation · Locating of cryptographic operations

1 Introduction
Physical side-channel attacks [Koc96] have been demonstrated to be an effective approach
for breaking the confidentiality of embedded cryptographic devices. Instead of relying on
weaknesses in the cryptographic algorithm itself, physical side-channel attacks exploit the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.128-159
mailto:zcsjtu@sjtu.edu.cn,dwgu@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 129

dependency between the physical signals of the device (power consumption, electromagnetic
radiation, etc.) and secret information in processing. For a successful attack, the evaluator
must at least a) acquire one or more side-channel traces while the target device executes
Cryptographic Operations (COs), and b) identify or speculate the type and implementation
of cryptographic algorithms. To characterize the correlation between the secret information
and side-channel patterns, the initial step in an attack typically involves appropriately
locating and aligning the trace sections that correspond to the target COs.

When evaluating the source code implementation of cryptographic algorithms against
side-channel attacks, which we refer to as the White-Box condition, locating COs in
the traces can be accomplished by simply adding synchronization signals (e.g., GPIO
triggers) to the code. Such an idealized setup is commonplace in academic research for
theoretical attacks conducted under controlled laboratory settings [CZLG21]. However,
the source code of real-world targets is typically restricted, particularly in the embedded
system industry where many proprietary libraries and firmware are distributed only in
closed-source form throughout the supply chain [JSO20].

On the other hand, for cryptographic devices whose internal implementation is com-
pletely unknown to an attacker, which we refer to as the Black-Box condition, performing
side-channel analysis (SCA) is an inherently challenging task. As presented in various real-
world attacks on black-box cryptographic chips [RLMI21, Hér20, Hér22], attackers have
to repeatedly speculate on the implementation and/or protection of the target and try out
the corresponding exploits until they succeed, which is time-consuming and labor-intensive.
Some attacks identify unintended synchronization signals, such as communication packets
with peripherals, to deduce the locations of cryptographic operations for fault injection
attacks [Boo20, Wou22]. However, such ad hoc features are unscalable for general cases.
An alternative approach is to obviate or automate the process of locating COs in the
overall side-channel attack routine based on particular assumptions about the trace. Lu et
al. [LZC+21] propose a deep learning architecture for end-to-end profiling attacks that
does not require explicit COs locations in raw traces, but rather requires the target to
be within a limited range (∼100,000 sampling points). But the real-world cryptographic
applications such as Secure Boot may run for several seconds with millions of sampling
points. Trautmann et al. [TBW+22] designed a semi-automatic tool for locating COs on
side-channel traces, assuming that the execution time of the target CO is fixed and known
to attackers. However, measuring this parameter with reasonable accuracy is non-trivial
without access to source code. In summary, automatically locating COs in side-channel
traces remains a challenging task under the non-white-box condition.

We have, however, observed that in real-world attacks against embedded devices,
obtaining part or all of their binary firmware is frequently possible and typically one of the
earliest steps in overall security analysis. For example, Bellom et al. [MRBT21] analyzed
the Pixel 3 filesystem to obtain the firmware for the Titan-M security chip. Other methods
of obtaining the target binary include extracting from the upgrade kit [CLC+22], exploiting
software flaws [WGP21], downloading from on-chip storage [NS], or performing a dump
via fault injection attack [WGP22, Alt]. In addition, many hardware wallet vendors make
their binary firmware public available to ensure transparency to their users [Tre, Key, One].
Since it is neither access to the full source code nor completely unaware of the cryptography
implementation, we refer to it as the Gray-Box condition 1. The gray-box binary firmware
lacks the same ease of code modification and trigger addition as the white-box source
code, but still contains all necessary information for side-channel analysis of the target
device, including cryptographic algorithm implementation and input-output logic. Several
studies have utilized binary information of single instruction [NSUH22] or basic blocks
[VdHOGT21] to improve the efficiency of locating fault injection positions in side-channel

1Note that this is not equivalent to accessing all secrets inside the device, which may be generated
internally or live in secure storage isolated from the code segment.

130 Trace Copilot

traces to bypass security access controls. Nevertheless, there is no systematic framework
for integrating information from binary firmware to facilitate side-channel analysis against
cryptography algorithms in embedded devices. Under this scenario, the existing methods
for segmenting and aligning the raw side-channel traces work no differently than with the
black-box condition, despite the availability of sufficient information.

In contrast to side-channel trace locating, numerous established techniques exist for
automated CO code identification in compiled binaries. Some detection methods rec-
ognize cryptographic codes based on heuristic rules around the statistical features of
the disassembled binary code, such as the entropy of the code [WJC+09], the ratio of
bitwise instructions [MWLGP12], specific cryptographic algorithmic constants [Gui], etc.
There are also advanced methods utilize graph-level information like Control-Flow Graph
(CFG) and Data-Flow Graph (DFG) for detection, where even proprietary cryptographic
algorithms are identifiable[XMW17, LGF15, MMW21]. Unfortunately, there is no existing
method to leverage these results on locating COs in the side channel trace.

A promising approach is to patch the firmware directly to inject the signals for
synchronization as in the source code, and the techniques for directly modifying binary code
logic are often referred to as binary instrumenting or rewriting [SHC20, DBMP23, QZZG23].
Applying such an approach requires answering two questions: 1) where to inject the code
for accurate CO locating within the side-channel trace, and 2) what code to inject to
efficiently bring the information in binary code analysis into side-channel analysis. However,
challenges could arise from the balance between minimizing disruptions to the side-channel
characteristics of the original firmware and ensuring that the inserted code reveals sufficient
information for accurate CO locating.

Our contributions
In this paper, we fill the gap of locating COs from side-channel traces under binary-only
conditions by utilizing binary analysis and instrumentation techniques. We first map the
binary code execution to the side-channel traces using a binary instrumentation strategy
that we tailor for side-channel analysis. Through the instrumentation, we obtain well-
labeled and segmented side-channel traces. After that, we convert the side-channel CO
locating task into the cryptographic binary code detection problem. By integrating existing
software analysis techniques with our CO analysis scheme tailored for side-channel analysis,
we finally present a tool that automatically locates the target CO in side-channel traces
relying only on binary information.

• We present a systematic framework to automate the precise location of cryptographic
operations in side-channel traces under binary-only gray-box conditions, combining
runtime binary information with physical side-channel signals via static binary
instrumentation.

• We propose a scheme for fine-grained mapping binary code execution to physical
side-channel traces on embedded devices. The scheme aligns the points on the trace
with binary instructions and enables the co-analysis of binary characteristics with
side-channel profiles.

• Based on the proposed scheme, we develop a method to automatically locate cryp-
tographic operations in side-channel traces. Our method only requires the use of
information from the binary firmware without necessitating further assumptions
about the side-channel characteristics of the target. Further, we implement and open
source2 a prototype of the proposed solution for ARM Cortex-M, which is the most
widely used architecture in embedded devices.

2https://anonymous.4open.science/r/anonymous-ches24-29-4E58

https://anonymous.4open.science/r/anonymous-ches24-29-4E58

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 131

• We first demonstrate our tool by automatically locating AES rounds in long and
noisy side-channel traces. Additional experiments demonstrate that the tool, with
minimal user knowledge based fine-tuning, effectively scales to more complex CO
implementations, including AES with random-delay countermeasures and elliptic
curve scalar multiplication. Further, we evaluate its effectiveness in real-world with
a commercial close-sourced cryptography application. The performance analysis and
comparison experiments highlight our advantages over existing methods in noisy and
jittery traces.

• We performed runtime and storage performance analysis of our tool on diverse devices
against various cryptography libraries, including tinyAES [kok], MbedTLS [ARMc],
WolfSSL [Inc]. The results indicate that our performance supports applications on
real-world embedded devices and surpasses the efficiency of related tools.

The rest of this paper is organized as follows. Section 2 presents the background of the
research problem, the existing tools we used, as well as our motivation and overview. In
Section 3 we present our proposed framework in detail, including design considerations and
challenges addressed. In Section 4, we introduce an application of the proposed framework
on how to use binary information to automatically locate COs in side-channel traces. In
Section 5, we evaluate our proposed tool on different hardware and cryptographic algorithm
implementations and analyze the results. In Section 6, we provide a discussion around the
limitations and possible future works of the method in this paper. Finally, we conclude
this paper in Section 7.

2 Background
2.1 Locating COs in a side-channel trace
For a better understanding of our research questions and method, we formulate the problem
to be addressed here. Define Tsc as the side-channel trace produced by the device:

Tsc = [ADCtstart , · · · , ADCt−1, ADCt, ADCt+1, · · · , ADCtend] (1)

where ADCt represents the digital signal obtained by converting the amplitude of the side-
channel measurement at sampling point t. Then locating a target CO in the side-channel
trace can be defined as finding the segments Sco,i,s:

Sco,i,s =
[
ADCtCO,i,s , · · · , ADCtCO,i,e

]
(2)

where tCO,i,s/e indicates the start and end moment of the ith round of CO execution.
As mentioned earlier, it could be challenging to obtain this result automatically without
additional information.

Since the proposed solutions that follow in this paper make extensive use of the binary
instrumentation techniques, a necessary introduction to the techniques we use is provided
in the next subsection.

2.2 Binary instrumentation on embedded devices
Binary instrumentation is a technique that involves directly modifying binary code to gain
insights into its behavior or to insert extra code, which is desirable for addressing our
challenges. Unlike on the x86 platform, there are quite limited binary instrumentation
tools available for embedded platforms. We employ the PIFER framework [QZZG23]
as our basic instrumenting tool, due to its open source and well support for the ARM
Cortex-M, the embedded platform we focus on.

132 Trace Copilot

PIFER works by patching the target instruction to one that throws an exception when
executed, and meanwhile hijacking the corresponding exception handler in the interrupt
vector table to execute its own appended code (refer to Figure 3 for a visualization).
After gaining the control flow, it will search for and jump to the user-defined hooking
code corresponding to the address where the exception occurs. In order to allow hooking
of (almost) arbitrary addresses, PIFER uses a complex mechanism to handle different
instructions case by case.

However, it suffers from excessive time and storage overhead. Therefore, we thoroughly
optimize PIFER for our purposes, which concentrate on COs and side-channel scenarios, by
removing unnecessary instruction processing logic and significantly improving the efficiency
of the target lookup algorithm (Section 3.2.1).

2.3 Overview
Motivation. Assuming that we obtain another trace Tbin for the execution of the binary
code inside the target during the same time:

Tbin = [PCtstart , · · · , PCt−1, PCt, PCt+1, · · · , PCtend] (3)

where PCt is the address of the the binary code being executed at moment t. The intuition
is that by identifying the set of addresses associated with the CO (program counter PCt),
we can precisely determine the indexes of Tbin that belong to the CO and derive the
corresponding tCO,i,s/e in Equation 2. However, two primary challenges must be overcome
to achieve this goal:

1. Obtaining Tbin. It is equivalent to mapping the binary execution to the side-channel
trace, i.e., identifying the running instruction at a specific point on the latter.

2. Identifying the binary instructions equivalent to the COs in the SCA perspective, in
particular the boundaries corresponding to tCO,i,s/e.

Our method. After introducing the problem definition and the employed techniques,
we offer a high-level overview of our solution here. Basically, the problem mentioned in
Section 2.1 is divided into two subtasks according to the challenges identified:

• Mapping the binary execution to the side-channel trace: First, we address
the challenge of obtaining Tsc. By designing a double instrumenting scheme, we can
accurately obtain the correspondence between the binary program execution and the
side-channel trace (Section 3).

• Identify the boundary addresses of COs in a binary firmware: Integrating
the runtime mapping information and static binary analysis, we automatically locate
appropriate boundary addresses within the cryptographic functions to further segment
the COs in the side-channel traces. (Section 4).

Combining the results of the two subtasks, we can acquire high-quality side-channel
trace segmentations of the COs from target devices for further analysis (Section 4.3.2). In
the next two sections, we will dive into the details of each sub-task.

3 Mapping the program flow to the side-channel trace
In this section, we address the first subtask: mapping the binary execution flow to the
side-channel trace. As illustrated in Figure 1 from a high-level perspective, our proposed
approach consists of the following steps.

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 133

Original binary firmware

Disassemble and Analysis

Static Binary Instrumentation

Aligning and Labeling

PC hit:0x4E58
PC hit:0x8232
PC hit:0x8232
PC hit:0x8232

…

Annotated trace

0x
82

32

0x
4E

58

0x
82

32

0x
82

32

0x
82

32

0x
82

32

Step 1

Step 3

Step 2

Result

0x4C7A BEQ 0x4C82
0x4E58 BL 0x4C88
0x8232 CBZ R5, 0x825C
...

Target instructions

Modified firmware #1 Modified firmware #2

C

Inject trace markers Inject runtime logger

Execute on modeling device

a
1

b

Figure 1: Mapping the program flow to the side-channel trace using binary analysis and
instrumentation

1. Disassemble and analyze the firmware to extract the instructions of interest (Section
3.1). Hooking each instruction exhibits significant overhead and disrupts the original
side-channel characteristics. Therefore, it is more practical to selectively trace a few
critical instructions for SCA. For example, focus on the ones that make the Program
Counter (PC) change non-linearly to depict the control flow.

2. Apply static binary instrumentation on these addresses to generate two patched
binaries (Section 3.2):

• firmware #1, where a code snippet that synchronously generates the segmen-
tation signals (referred to as trace markers) is injected at all target instructions.
For example, raising a GPIO pin before and after any AES round.

• firmware #2, where the code injected at the target instructions will log runtime
information such as the current PC or cycle counter. These logics usually take
longer to process, hence they are separated from the trace markers in firmware
#1 to minimize the latter’s impact on the original side-channel characteristics.

3. Execute two modified binaries on a controlled device to obtain:

(a) The side-channel trace Tf1 (e.g., EM or power) of the target running firmware
#1. which contains the side-channel features of the original binary as well as
our injected marker code.

(b) The marker signals are triggered when executing to target addresses, which
provide a merged version of adjacent tCO[i]e/s . In other words, these signals

134 Trace Copilot

indicate the execution timing of the target instructions, enabling alignment of
binary code execution with the side-channel trace.

(c) The execution flow record of those addresses. By design, the marker signal
only indicates that a target instruction is being executed, requiring additional
information to identify which one it is. This is achieved by matching the
occurrences of the marker signals one-to-one with the logged PC addresses.

4. Finally, we remove the noise introduced by the injected code in Tpatched and annotate
the segments with the instruction addresses with the marker signals (Section 3.3).

In this way, we establish a precise mapping between binary code execution flow and
side-channel traces, providing a basic framework for assisting side-channel analysis with
binary information (or, conversely, side-channel analysis-assisted binary analysis). Next,
we’ll dive into the design details and challenges involved in each step.

3.1 Locate appropriate instructions
First of all, we need to parse and disassemble the raw binary firmware, which may be
dumped from on-board FLASH memory or upgrade packages and is not in ELF format.
There are quite a few tools and studies focusing on this problem, and we adopt Ghidra
[Ghia] for its open-source license and high scalability for embedded architectures.

The practical challenge in this step is to select the appropriate target instructions to
trace in a side-channel analysis context. If the trace is too coarse-grained (e.g., function
level), it may fail to segment the side-channel trace well, especially for some massive
cryptographic functions with possibly dozens of loops inlined. On the other hand, if
we take a too-fine granularity (instruction level), the overhead is prohibitively high and
the noise interference introduced by the tracker will completely ruin the side-channel
information. In our design, we focus on all instructions that make non-linear changes to
the PC registers, i.e. we are tracking the granularity of the basic block in the control flow
graph. Taking the ARM Cortex-M architecture as an example, this includes unconditional
jump instructions (B), conditional jump instructions (B{cond}, CBZ/CBNZ), function call
(BL) and return instructions (BX LR). Choosing such basic blocks as the trace granularity
has two advantages in the context of side-channel analysis:

• The instructions inside a basic block execute sequentially, with a fixed time duration
most of the time (when there are no interrupts), facilitating precise mapping to
side-channel trace.

• Instrumenting at these locations avoids disrupting arithmetic and data processing
instructions, minimizing interference with information in the side-channel trace
relevant to cryptographic operations of primary interest.

Specifically, we develop a Ghidra Python script to automate the processing of the
binary firmware and filter out all PC-altering instructions in a pattern-matching way.

3.2 Static binary instrumentation for embedded firmware
In this step, we perform static binary instrumentation at the target addresses extracted
in Step 1 to inject new code gadgets directly into the raw binary firmware. Specifically,
those gadgets should help to precisely segment and label the side-channel traces, with the
following design requirements:

• Correctness: The annotation signal must accurately map the executing binary
code block to the side-channel trace.

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 135

• Efficiency: There may be thousands of addresses to hook, therefore the performance
is crucial. This rules out the option of using complex communications such as a
hardware debugger.

• Availability: The way to send annotation information must be generic enough with-
out dependence on specific hardware implementations (e.g. UART, MTB [ARMa]).

• Low and removable noise: Adding new code to the program execution will also
emit physical side-channel information, hence minimizing and eliminating such noise
from the trace is essential.

For correctness and efficiency, we first refine an existing binary instrumenting tool to fit
our side-channel analysis scenario. For efficiency, availability, and noise issues, we propose
a double-instrumentation scheme: one patch (firmware #1 in Figure 1) focuses solely
on efficiently segmenting traces in real-time, while the other (firmware #2 in Figure 1)
records the execution information of binary code. By combining the outputs generated by
those two firmware, one can easily determine the executing code block at any given time.

3.2.1 Refining binary instrumenting tool for side-channel analysis purpose

As discussed in Section 2.2, our basic instrumenting tool PIFER, as a generalized framework,
is not designed for side-channel analysis. On the one hand, its performance overhead
rises significantly with the number of hooking addresses. On the other hand, the linear
lookup mechanism employed in the search for the hook handler corresponding to a target
instruction, as depicted in Fig. 2(a), introduces instability in the instrumentation time
overhead, hindering the removal of those noises from side-channel traces. In order to
address the above issues and make it applicable to side-channel scenarios, we make two
significant modifications to PIFER:

Instable and
linear-growth
execution
time

;R0 = Hooked PC address
LDR R1, =0xfbe
CMP R0, R1
BEQ handler_for_0xfbe
LDR R1, =0x4014
CMP R0, R1
BEQ handler_for_0x4014
LDR R1, =0x422a
CMP R0, R1
BEQ handler_for_0x422a
LDR R1, =0xfbe
CMP R0, R1
BEQ handler_for_0xfbe
LDR R1, =0x4014
CMP R0, R1
BEQ handler_for_0x4014
LDR R1, =0x422a
CMP R0, R1
BEQ handler_for_0x422a
LDR R1, =0xf8a
...

;R0 = Hooked PC address
LDR R4, =sorted_addr_list ; R4:handler addresses array
LDR R2, =#num_targets ; R2:r
MOV IP, #0 ; IP:l
ADD R3, R2, IP ; R3:mid
ASR R3, R3, #1 ; mid=(l+r)/2
.binary_search_loop:

LDR LR, [R4, R3, LSL #2]; LR=addr[mid]
CMP LR, R0 ; compare arr[mid] and target
MOVGE R2, R3 ; if >, r=mid
ADDLT IP, R3, #1 ; if <, l=mid+1
ADD R3, R2, IP
CMP R2, IP ; if not found yet (l!=r)
ASR R3, R3, #1 ; mid=(l+r)/2
BGT .binary_search_loop ; continue

LDR LR, [R4, IP, LSL #2] ; load handler address to LR
BX LR ; jump to the handler

...

Stable and
log-growth
execution
time

(a) PIFER’s handling process (b) Our handling process

Figure 2: Improve and stabilize the time overhead for hook handler matching process.

1. Utilize bisection instead of linear search to reduce both the time and storage overhead,
as illustrated in Figure 2(b). Since all target addresses are determined prior to
firmware execution, they can be pre-sorted and employed for bisection search. Such
an approach also maintains consistent overhead across different instrumenting targets,
thus simplifying the removal of their noise signals from side-channel traces.

2. Eliminate processing logics that are not relevant to branch instructions to minimize
runtime overhead. PIFER serves as a general-purpose tool that includes additional
logic for instrumenting instructions such as MOV or LDR, which are unnecessary for
our purpose.

136 Trace Copilot

Simple measurements using hardware have shown that our implementation executes
much faster compared to PIFER’s, with a total overhead of approximately 64 clock cycles
when hooking a single address compared to PIFER’s 300. Additionally, our binary searching
algorithm results in an even shorter runtime for each hook as the number of hooking
addresses increases.

3.2.2 Inject the trace marker

In firmware #1, we focus solely on efficiently segmenting the side-channel traces. Taking
a conditional jump in a loop as an example, the injected trace marker system is illustrated
in Figure 3. The PIFER framework takes over the control flow by patching the target
instruction with an undefined instruction and hijacking the handler in the vector table. It
also automatically preserves the context and determines the next value of the PC register
to ensure the correct execution of the original program after the patch. To minimize the
overhead, a marker signal is generated immediately when we gain control of the execution.
The signal is typically a GPIO pin pull-up/pull-down, which is available on almost all
embedded platforms. When the device requires GPIO pins’ initial configuration before
use, we hijack the reset handler to inject corresponding code at the very beginning of
execution. After executing the corresponding hook function (inside the PIFER framework)
which determines the next PC depending on the context, we reset the trigger pin before
returning to the original control flow.

Handler0

Handler2

...
Label:
Instruction
Instruction
B{cond} Label
Instruction

...

Original Control flow

Handler1

Exception handler
hijacked by PIFER

After Instrumented
...
Label:
Instruction
Instruction
Raise Exception
Instruction

...

Injected handler code

PIFER Framework

Return to Label or Instruction
according to PIFER’s output

Pull down the trigger pin

Pull up the trigger pin

PIFER framework

Our code

Origianl binary

Figure 3: Marker signal injection example for a conditional jump instruction.

Note that to minimize interference with the original side-channel information, the
hooking code above only sends the marker signals for trace segmentation, without recording
associated instruction addresses. Nevertheless, it still introduces additional noise of hooking
code execution into the original side-channel trace and makes the trace a bit “longer”. In
subsection 3.3, we will discuss methods of eliminating them.

3.2.3 Inject the runtime logger

In firmware #2 we record the order of target address occurrences, a task that firmware
#1 omits due to noise overhead. A simple approach involves acquiring a debug trace
utilizing a specialized performance evaluation tool, such as Segger J-Trace [Gmb], and
searching for a subset of the target instruction addresses within it. However, such tools
tend to be expensive and closed-source and require multiple target pins that are potentially
redefined for other purposes. Therefore, we propose an alternative based on binary
instrumentation and hardware breakpoints. Specifically, we first hijack the control flow at

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 137

every target instruction following Fig. 3, without any additional operations. Next, we set a
hardware breakpoint at the beginning of the hijacked handler using a hardware debugging
interface (SWD, JTAG, etc.), and develop a GDB script on the host computer to read
the source address each time the execution reaches the breakpoint, thereby recording
the target instructions’ execution flow. In other words, we collapse the execution of all
target instructions to the same location through binary patching, effectively enabling
tracing with a single hardware breakpoint (usually only 2-6 in total). The time overhead
of communicating with the debugger and the host computer is non-critical, as only a single
execution record is needed, and there is no concern about perturbing the side-channel
trace, which is already handled in firmware #1.

3.3 Eliminate noise and annotate the trace

Hooking codeOriginal code

Figure 4: EM side-channel trace and marker signal collected from a device running an
instrumented firmware which performs an AES-128 encryption.

As shown in Figure 4, there are extra sections in the side-channel trace after instru-
menting due to the hooking code. We use the following procedure to eliminate those noise
sections:

1. Extract all the edge pairs [lefti, righti] of the marker signals. Specifically, we scan
the trace of the marker signal from left to right and record the offsets in the array
where the amplitude exceeds or falls under a certain threshold (e.g., half of the
maximum amplitude).

2. Measure interrupt response latency ∆1 and interrupt return latency ∆2.

3. For each edge pair, remove the [lefti −∆1, righti + ∆2] part in the trace.

The interrupt response latency ∆1 is the time between an undefined instruction’s execution
and the first instruction in the exception handler, while the interrupt return latency ∆2 is
the duration from the handler’s final instruction to the next instruction in the original
execution flow. Such delays are typically caused by the processor switching between
contexts and are only related to the hardware device used. According to the hooking
process depicted in Figure 3, the execution from [lefti −∆1, righti + ∆2] is irrelevant to
the original binary. Therefore, we must exclude these parts from the trace.

Figure 5 illustrates how the ∆1 or ∆2 is accurately measured using hardware metrics.
Specifically, the device under test will pull up two different pins before (pin A) and after

138 Trace Copilot

Output of pin A

Output of pin B

LDR+MOV+STR

LDR+MOV+STR

(a) Measurement by the oscilloscope.

LDR R1, =0x50000000
MOV R3, #0x4000000
STR R3, [R1,#0x508] ;pull up pin 26
UDF #0xAA
...

handler:
LDR R1, #0x50000000
MOV R3, #0x8000000
STR R3, [R1,#0x508] ;pull up pin 27

(b) Code used to measure ∆1.

Figure 5: Measurement example for nRF52840 chip [Sem], where pin A set to P26 and
pin B set to P27.

(pin B) the exception occurs, having an oscilloscope capture and measure their voltage
level. The precise execution time of the interrupt response latency ∆1 is calculated
by subtracting the overhead of the pin control code ∆pin (usually a combination of
LDR+MOV+STR instructions) from the difference between the two rising edges ∆total. The
value of ∆pin can be easily determined by measuring two successive pull-ups.

Finally, we iterate through the sequence of instructions produced by firmware #2
and assign their addresses one by one to the side-channel locations corresponding to the
marker signals. In conclusion, we successfully establish a mapping between side-channel
traces and binary code. In the next section, we present a practical application of this
hardware-software co-analysis technique: automatically locating cryptographic operations
in side-channel traces using binary information.

4 Automatically locating cryptographic operations in side-
channel traces using binary information

S1: Detect cryptography functions

Binary firmware

Detection with manual
reverse engineering

(optional)

Automated detection
with existing tools

Extract cryptography
function’s body and control

flow graph in the binary

Identify CO blocks and
boundary addresses suitable

for trace segmentation

S2: Locate COs boundaries for SCA interest S3: Template construction and matching

Patch and acquire the
CO trace segments to

build the template
Similarity score for

locating CO

Matching with the trace from
uncontrolled target device

Figure 6: Automatically locating cryptographic operations in side-channel traces using
binary information.

In this section, we first clarify our application scenarios and the threat model (Section
4). Then, we present our solution for automatically locating cryptographic operations in
side-channel traces using binary information. As illustrated in Figure 6, the proposed
approach consists of three steps:

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 139

• S1: Detect cryptographic functions in the binary firmware. Given that this long-
studied problem in software analysis is not directly related to SCA, we just use
existing tools for automation. As an alternative, manual reverse engineering may
further improve the results but requires extra labor efforts. (Section 4.1)

• S2: In the function body, locate the boundary addresses of the COs suitable for trace
segmentation. Based on the patterns of typical COs targeted in SCA, we build an
efficient locating method that leverages both static analysis and dynamic statistical
information generated by firmware #2. (Section 4.2)

• S3: Instrument at these boundary addresses as in Section 3 and obtain a set of
segmented-by-CO traces from a profiling device. Then, build the templates to match
unlabeled traces acquired from the target device. Finally, locate the CO positions in
the target trace based on the matching scores. (Section 4.3)

Requirements and Application Scenarios. Before we dive into the details, we must
clarify the application scenarios and assumptions of our method. We assume that the
attacker is able to physically access the target device and capture multiple side-channel
traces by triggering the CO execution inside. Following the common assumptions for
side-channel attacks, we also assume that some basic level of user knowledge is known to
the proposed method, including the architecture information of the target, the type of
cryptographic algorithm to be attacked and the manner to invoke/trigger the execution of
the cryptographic algorithm. We also assume that the user may supply more knowledge
to fine-tune the tool to better handle sophisticated COs or countermeasures, as discussed
in Section 5.2 and 5.3. Following typical real-world attack scenarios, we assume that
the user can manage to acquire a controllable hardware of the same model (i.e., buying
development kits), which we refer to as the profiling device. As we are focusing on the
gray-box scenario, we also assume that the attacker has access to the binary code of the
target cryptography implementation, but not to the key. For example, the secure boot or
cryptography library in the SDK of the same chipset could be shared between different
products, but the keys for encryption/decryption may vary.

4.1 Step 1: Function level cryptography code detection in the binary
We employ two open-source tools to detect cryptographic functions in the binary firmware:
a) where’s crypto [MMW21], which uses data flow graph isomorphism to detect symmet-
ric cryptography functions, and b) BinaryAI [JAH+24], which conducts binary-to-source
similarity analysis to recognize cryptography library functions. Both tools can analyze
stripped binary firmware without function names or other debug information, and we just
pick the cryptographic functions of interest in their output. However, they mainly focus
on function-level identification for reverse engineering or malware detection, while SCA
requires finer-grained operations that correspond directly to some core cryptography struc-
tures, requiring a finer-grained definition and location for the CO. For example, marking
the call/return of an ECDSA signing function extracts a side-channel trace containing all
operations, such as memory management, random number generation, elliptic curve group
arithmetic, and hashing. However, regular CPA or DFA attacks often need alignment to
specific COs like scalar multiplication.

4.2 Step 2: Locating fine-grained COs boundaries for SCA interests
In our current implementation, we choose to use the loop bodies instead of function as a
more reasonable basic unit of CO for SCA. The benefits are twofold: 1) the loop is more
focalized on COs than the function body, providing significant information for SCA, and
2) it is a general structure that forms the majority of cryptography algorithms, giving us

140 Trace Copilot

great generalizability. Another practical reason is that in memory-constrained embedded
devices, loops are more popular than unrolled implementations for saving binary size. For
example, the AES loop in MbedTLS 3 are never unrolled under ARM-GCC across different
optimization levels. Nevertheless, it is possible to extend our tool to handle loop-unrolling
COs, as discussed in the Future work in Section 6.2.

4.2.1 Identify the CO-related loops from others

Using Ghidra’s scripts and headless analyzer [ghic], we automate the process of getting all
the candidate loops in the given function4. In some simple cases, there is only one loop in
the cryptographic function, such as the AES block encryption/decryption in MbedTLS
(shown in Figure 7(a)). However, depending on the implementation and compilation
options, the target function may include many non-CO loops, as exhibited in Figure 7(b).

int mbedtls_internal_aes_encrypt(
int *a1, int *a2, unsigned int *a3) {

...
85 do // the AES round loop
86 {
87 v15 = FT3[v46];
...
113 v12 = v27 ^ *(v13 - 9) ^ \

FT1[BYTE1(v54)] ^ FT2[BYTE2(v55)];
114 v53 = v12;
115 }
116 while (v14); // the boundray
...
150 return 0;
}

int ecp_mul_comb(
_DWORD *a1, int a2, int a3, int a4, int (*a5)(), char *a6){

...
727 while (v59 != v125) // the loop that performs k*G
728 {
729 v21 = sub_8F80(a1, a2); // ecp_double_jac
...
732 v84 = *--v59;
733 v21 = sub_9658(a1, v121, v16, v100, v84); // ecp_select_comb
...
736 v21 = sub_9844(a1, a2, a2, v121); // ecp_add_mixed
737 if (!v21)
738 continue; // continue to next window
741 goto LABEL_44; // the boundray
742 }
...
845 goto LABEL_14;
}

(a) Decompiled AES function exhibits
only one loop, which is easy to identify.

(b) Decompiled elliptic curve scalar multiplication function. By inlining
multiple sub-functions, it has over 20 loops and 800+ lines of pseudo-C,

while only 1 loop with ~10 LoC is the CO we are interested in.

Figure 7: Analysis function samples in a compiled (-O3) MbedTLS library for Cortex-M4.

To identify the CO-related loops, we first filter out the non-cryptographic ones according
to a set of heuristical rules as follows:

• Infinite loop: Contains basic block that unconditionally jumps to itself.

• Idle/Peripherals waiting loop: Contains special instructions such as WFI (Wait
For Interrupt), WFE (Wait For Event), etc.

• Tiny loop: Contains very few instructions (e.g., less than 5) and no function
calls in the whole loop body. They are usually inlined linear memory operations
(memcpy/memcmp). In contrast, cryptographic operations typically have sub-routines
or hundreds of arithmetic/bitwise instructions per loop.

Next, we further determine the CO candidates by exploiting the fact that a) COs
generally consume more execution time than regular non-CO loops, and b) the number of
loop iterations in COs is often predictable due to their constant-time implementation. For
example, during ECDSA signing on a P-256 curve using MbedTLS’s comb/window-based
implementation (ecp_mul_comb, window size=5), we expect to see a time-consuming
loop executed

⌈ 256
5

⌉
= 52 times, corresponding to the scalar multiplication kG.

3https://github.com/Mbed-TLS/mbedtls/blob/c7569a8c4bc7525a4d4d435eb3cd04031d7f64bc/
library/aes.c#L961

4https://anonymous.4open.science/r/anonymous-ches24-29-4E58/src/find_loops.py
5https://github.com/Mbed-TLS/mbedtls/blob/2ca6c285a0dd3f33982dd57299012dacab1ff206/

library/ecp_curves.c

https://github.com/Mbed-TLS/mbedtls/blob/c7569a8c4bc7525a4d4d435eb3cd04031d7f64bc/library/aes.c#L961
https://github.com/Mbed-TLS/mbedtls/blob/c7569a8c4bc7525a4d4d435eb3cd04031d7f64bc/library/aes.c#L961
https://anonymous.4open.science/r/anonymous-ches24-29-4E58/src/find_loops.py
https://github.com/Mbed-TLS/mbedtls/blob/2ca6c285a0dd3f33982dd57299012dacab1ff206/library/ecp_curves.c
https://github.com/Mbed-TLS/mbedtls/blob/2ca6c285a0dd3f33982dd57299012dacab1ff206/library/ecp_curves.c

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 141

scalar multiplication kG

precompute points for the adapted comb
method: double (upper) and add (left)

CO-unrelated loops

compute the representation of input
that will be used in comb method

Cycles

Figure 8: The remaining loops and their statistics after heuristic filtering in the
ecp_mul_comb function in MbedTLS 2.6.10 from Figure 7(b), which performs a sign-
ing over the P-256 curve using comb method from scratch. In the latest version of
MbedTLS, however, the precomputation tables for standard curves are hard-coded5,
making the scalar multiplication loop the most time-consuming one in the signing process.

0 x824A MOV R1 , R10 ; loop start
...
0 x8282 CMP R0 , #0
0 x8284 BNE.W 0 x87EA ; break early
...
0 x828A CMP R5 , R6
0 x828A BNE 0 x824A ; boundary : last conditional jump to loop start

Figure 9: Select the instructions corresponding to the boundaries of the CO.

As illustrated in Figure 8, CO and irrelevant loops can be clearly distinguished by
the timeshare and the number of loop executions. These statistics can be efficiently
obtained by running firmware #2 in Section 3.2.3 with minor modifications. Specifically,
we instrument the control statement of each remaining candidate loop to log the clock
cycle differences using the DWT Cycle Counter [ARMb]. For some special platforms
without Cycle Counter support (Cortex-M0/M0+), we use firmware #1 to hook at the
same locations and calculate the markers’ time differences as an alternative.

For each algorithm implementation, we define a configuration pair (Ntop, Cloop) to
determine the last selected loops, specifying the top Ntop most time-consuming loops and
their numbers of executions are in the set Cloop. Thus, even with the presence of false
positives, the corresponding loops must occupy a significant portion of the trace, and
segmenting them out would also be beneficial to the SCA. For example the AES-128 config-
uration is (Ntop = 1, Cloop = {9, 11, 14}), while the ECDSA signature configuration, using
the function in Figure 7(b), is (Ntop = 3, Cloop = {52}). In summary, we comprehensively
utilize the binary analysis tools like Ghidra as well as the outcome from Section 3.2.3 to
automate the identification of the COs in the binary function.

4.2.2 Locate the boundary instructions for trace segmentation

To construct a robust matching template, we aim to include the loop body as fully as
possible. Therefore, for each of the CO loops, we use the last conditional branch instruction

142 Trace Copilot

1

2
3

4

5 6

7

8

9 10

1

2 3

4

5 6 7

8

9 10

(a) An example control flow graph (b) Dominator tree (c) Back-edges and corresponding natural loop body

Figure 10: Finding loops using the classical dominator tree approach.

of the loop body as the boundary marker for the CO loop, as shown in Figure 9. To find
such boundaries, we need to exploit the natural loop finding process, as shown in Figure
10, which involves the following steps:

1. Construct the dominator tree of the CFG: A node u of a CFG dominates node v if
every path from the entry node to v must go through u. The dominator tree can
be loosely understood as linking each node to its closest dominating parent. The
construction of the dominator tree and its detailed definition are beyond the scope
of this paper, and we obtained the dominator tree using Ghidra’s built-in function
[ghib]. Therefore, it is not discussed further.

2. Identify back edges: A back edge is an edge in the original CFG that connects a
node to one of its ancestors in the dominator tree. Each edge represents a potential
loop in the CFG.

3. For each back edge (u, v), where u is the source node and v is the target node:

• Temporarily delete node v from the flow graph.
• Find the node set Su,v that can reach u. Those nodes set Su,v ∪ v forms the

natural loop of (u, v).
• Find the last instruction in node u. If a jump instruction is encountered, it is

treated as the boundary of the CO; otherwise, a breadth-first search is initiated
from it along the reversed edges in the loop body’s subgraph until the jump
instruction is reached.

4. Repeat Step 3 for all back edges in the CFG to identify all the natural loops and
their boundaries.

Note that loop-finding algorithm itself is not our contribution; it is provided only to
make the paper clearer and self-contained. However, we add the operations of finding CO
boundary instructions to its framework. As depicted in Figure 9, tracking the execution of
those boundary instructions, which usually control the loop execution and are executed as
many times as the loop itself (with a maximum deviation of 1 if the loop is broken early),
is equivalent to tracking the CO execution. For nested loops, we begin by marking solely
the largest loop. If the resulting match is unsatisfactory, we can identify a smaller layer of
loops and repeat as necessary.

4.3 Template construction and locating in target traces
4.3.1 Mapping the binary COs to the side-channel trace

In Step 2, we instrument the CO-representing addresses obtained in the previous stage
using the same method described in Section 3 to obtain firmware #1 and firmware

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 143

#2. Subsequently, we executed the two firmware on a profiling device and combined
them to produce annotated traces. The profiling device should not only be the same
type of hardware as the target device, but also share the same clock frequency, physical
environment, and parameters for side-channel trace acquisition (e.g., the relative position
of EM probes). After obtaining the annotated traces, we extract the trace segments
corresponding to the execution of CO by selecting the parts between each righti−1 and
lefti in Figure 4. Note that this approach usually drops the first CO in a cryptographic
algorithm sequence. Nevertheless, we can still use the patterns from the remaining rounds
of the CO to match the first one in the unknown trace.

4.3.2 Pattern matching on traces collected from uncontrolled target device

(a) EM traces of an AES-128 encryption (b) Corresponding spectrum features

Figure 11: Frequency domain signature of CO.

After producing the well-segmented and labeled version of the side-channel trace for
firmware #1 on the profiling device, we can construct a fine-grained template of COs. By
pattern matching, the template enables us to locate hidden COs in unknown traces that
are collected from the unmodified target device. While more advanced methods, such as
deep neural networks [BPS+20], exist for pattern matching, we implement an alternative
solution that leverages spectral features for CO localization, which is more lightweight and
serves as a proof-of-concept.

Using the frequency domain information of side-channel traces as a feature in CO
pattern matching has been proven to be an effective method [LDMPT15]. As shown in
Figure 11, the spectrum characterizes the energy distribution in the physical side-channel
leakage. According to the underlying principles of side-channel attack, it is highly relevant
to the operations and data performed in the device. Specifically, we build spectrum-based
side-channel templates by the following steps:

1. Perform Fast Fourier Transform (FFT) and low-pass filtering based on spectral
characteristics for the side-channel trace segments that map to any CO.

2. For multiple trace segments of the same CO, normalize their spectrum features.

3. Calculate the average width of remaining segments as WCOi
, and use interpolation

to transform all of these segments to the same length WCOi
.

4. Average the remaining frequency domain distributions to produce a fusion template.

Figure 12 illustrates a frequency-based fusion template for detecting AES-128 block
operations, which is constructed using only one profiling trace. It can be seen that the side-
channel profile of the same AES-128 implementation (from another device, with unpatched

144 Trace Copilot

(b) An EM trace collected from the target device.

(d) Matching results

Manually located ground truth

The COs' locations that our method
automatically find.

(a) Comparing the template spectrum with non-CO trace segments.

(c) Comparing the template spectrum with same CO trace segments.

Figure 12: The template of an AES-128 block CO and the matching results.

firmware) has a significantly higher similarity to it, whereas the common code (benchmark
code from CoreMark) differs significantly. Finally, for each CO, we scan all segments
of length WCOi

on the target trace with an adjustable step (typically having 1 ∼ 2%
points of WCOi

), perform an FFT on them and compare the frequency characteristics
with our template. Figure 3 illustrates the matching results of applying the template on a
long, noisy trace, where similarity is measured using the Pearson correlation coefficient.
Evidently, the similarity scores are significantly higher (∼0.7) in the positions with correct
cryptographic operations than in the other positions (∼0.3).

4.4 Implementation and open source release
We implemented a prototype targeting the above method using about 3,400 lines of Python
code. It generically supports the ARM Cortex-M platforms and works directly on the
raw binary firmware. We use Ghidra scripts extensively for automated binary analysis of
firmware and rely on keystone/capstone to assemble/disassemble. The implemented tool
is released under an open-source license and can be found at https://anonymous.4open.
science/r/anonymous-ches24-29-4E58.

5 Evaluation
In this section, our evaluation is conducted to answer the following research questions that
support our early claims of our proposed tool:

• Correctness: Can it correctly locate cryptographic operations in long, noisy traces?

• Practicality : Does it scale to real-world, complex firmware for cryptographic
applications?

https://anonymous.4open.science/r/anonymous-ches24-29-4E58
https://anonymous.4open.science/r/anonymous-ches24-29-4E58

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 145

• Performance: Does its runtime and memory overhead suffice for side-channel
security analysis?

To answer the above questions, diverse measurements, and case studies are carried out
in this section. We first evaluate the tool’s accuracy on a series of long and low-quality
traces generated based on the CoreMark benchmark suite [EEM09], with cryptographic
operations representing less than 0.2% of the whole trace (Section 5.1). Next, we evaluate
the scalability of the proposed method by integrating minimal user knowledge to handle the
random delays as a side-channel countermeasure (Section 5.2). Further, by fine-tuning the
template matching process, we investigate its effectiveness in locating long and complex COs
with, e.g., an optimized elliptic curve scalar multiplication in ECDSA signing implemented
by MbedTLS (Section 5.3). To validate the practicality of the locating method, we further
evaluate the practicality of it on the official secure boot firmware of the STM32 platform,
which is based on ST’s closed-source binary cryptographic library X-CUBE-CRYPTOLIB
[STMb] (Section 5.4). We also compare the results of the above experiment with the
SEMI-LOC [TBW+22], the existing state-of-the-art tool for automatically identifying COs
without source code. SEMI-LOC relies on the continuous similarity between COs and
requires knowledge of the width estimates of them in the trace. However, for binary-only
cases, obtaining the width estimates itself is challenging except through our method
described in Section 3. Finally, we comprehensively investigate its runtime performance
and storage overhead using hardware measurements (Section 5.5).

5.1 Locating COs in long and noisy traces
Experiment settings. Our first experiment used tinyAES [kok] and the CoreMark
benchmark suite [EEM09] on the nRF52840, an off-the-shelf Cortex-M4 chip with 32MHz
operating frequency. The side-channel traces of the device are acquired by a Langer MFA
EM probe [ET] and the sampling rate of the oscilloscope is set to 500MS/s. Each EM trace
is approximately 32M samples long, while a call to the AES-128 encryption (including
key expansion) for a single 16-Byte block takes ∼48K points. The CoreMark benchmark
suite is extensively utilized to evaluate the efficiency of microcontrollers by utilizing a
collection of typical workloads, such as matrix operations, state machines, linked list
manipulations, and CRC checksum computations. In our experiments, we randomly insert
an AES-128 encryption block into the test steps of CoreMark. The purpose of such a
design is twofold: a) to increase the noise in the traces with representative code execution,
thus simulating runtime interference in a real environment, and b) to investigate whether
our tool can distinguish target COs from other computationally intensive operations like
matrix multiplication.
Experiment steps. Specifically, the steps of our experiment are as follows:

1. Prepare the target firmware: at the source code level, randomly insert an AES-128
call with a static random key into CoreMark’s test iterations, and add GPIO triggers
marking at the beginning and end of AES function as ground truth.

2. Prepare the profiling firmware: Duplicate the target firmware and patch the AES
key to null bytes as we do not know the real key. The binary code outputting the
ground truth signals will be patched as a NOP operation. Then, use our tool to
automatically analyze and instrument the profiling firmware.

3. Acquire the traces: The target and profiling binary firmware are flashed into separate
nRF52840 development boards and side-channel traces are collected using an EM
probe positioned identically for both. The ground truth signals are recorded with a
second oscilloscope.

146 Trace Copilot

4. The collected traces are fed into our tool for template construction and matching.
The matched results will be given as the similarity score of the CO template on the
target trace.

Ground truth signal
for 1 AES-128 call

Matching result

Target EM trace
Matching result v.s. Ground truth (zoom-in)

Matching result of SEMI-LOC

The widths of the 9 rounds of CO (Unit: sampling points)

A
m

pl
it

ud
e

af
te

r
no

rm
al

iz
at

io
n

A
m

pl
it

ud
e

af
te

r
no

rm
al

iz
at

io
n

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

-1.0

1.0

0.0

4095

3965
3989 3988

3966 3965 3965
3987

3963

1 2 3 4 5 6 7 8 9

4100

3900

4000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 1e7

Figure 13: Find a CO in a long unknown target trace using 1 profiling trace and compare
the result wtih the SEMI-LOC.

Results and analysis. Figure 13 presents the result obtained by matching the CO in a
target trace using only one profiling trace. For a better presentation, this example includes
only one AES-128 call, which constitutes about 0.15% of the entire side-channel, which is
challenging to locate manually. Welch’s t-test on the distributions of similarity scores inside
and outside the ground truth region results in p<0.0001, demonstrating the significance of
the matching results. It is worth noting that we do not perform any pre-processing on the
profiling or target trace such as filtering or alignment, which means that our tool is robust
to work in poor conditions.

Another noteworthy observation is that the normalized similarity result indicates
other remarkable sections with a score greater than 0.8. Upon manual inspection, these
sections are found to correspond to matrix operations. We hypothesize this result arises
from the similarity between these operations and cryptographic algorithms which involve
numerous arithmetic instructions. Nevertheless, our template-matching approach effectively
differentiates the target CO from these operations.

To further validate the effectiveness of our work, we conducted a complete key recovery
attack against the first round of the AES-128. As a baseline, we conduct the CPA attack
directly on the raw long trace with basic correlation-based alignment. The results show
that the AES key cannot be stably recovered even with more than 100,000 traces. In
contrast, after reducing the alignment segment range to around 1.5 times the length of
the target AES-128 encryption using our matching results, the same attack successfully
recovered the 16-byte key with approximately 15,000 traces. As a comparison, under strict
manual triggering alignment, the full key recovery requires ∼3,000 traces.

The bottom left corner of Figure 13 displays the results of matching the trace using
SEMI-LOC after normalization to [0, 1]. We used 8 rounds instead of 9 in the setting
to avoid significant width deviations introduced by the first round (width=4095), which
could lead to incorrect results and unfair comparison. No other modifications were made
to the open-source tool. The best width parameter is 3968, obtained by iterating from the
smallest to the largest width with a step size of 5. Obviously, the result fails to accurately
indicate the target CO and yields many false positives. We attribute this to clock jitter and

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 147

other factors causing fluctuations in CO round execution times, which results in detection
scores for real COs being similar to those of the normal loops in CoreMark. For instance,
the lower right corner of Figure 13 shows the CO rounds with runtime variations larger
than the working threshold (several cycles variations, e.g., ±2) for the SEMI-LOC tool. In
contrast, our method utilizes the binary to precisely segment each CO, and therefore does
not suffer from this problem.

5.2 Practicality in the presence of side-channel countermeasures
In this experiment, we investigate the performance of our approach in the presence
of software side-channel countermeasure. Specifically, we choose the random delays
countermeasure for its effectiveness in disrupting trace segmentation alignment, while
masking or shuffling only complicates intra-CO analysis. It also invalidates the automatic
CO locating method that searches for a sub-trace with periodic repeating signals in the
side-channel trace. However, random delays are typically implemented as loops and thus
can be detected and isolated from the template construction process in our approach.

static unsigned char random_bytes[256] = {42};
unsigned char *RBP = random_bytes;
void refresh_rb(){
for(int i=0;i<256;++i){
random_bytes[i] ^= (
1103515245*random_bytes[(i-1)%256] + 12345

) & 0x7fffffff;
}
RBP = random_bytes;

}
void inline random_delays(){
for(int i=0;i<*RBP;i++){
__asm__ volatile("nop");

}
RBP++;

}

void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) {
refresh_rb(); // generate new random bytes
KeyExpansion(ctx->RoundKey, key);

}
static void Cipher(state_t* state, const uint8_t* RoundKey) {
uint8_t round = 0;
random_delays();
AddRoundKey(0, state, RoundKey);
for (round = 1; ; ++round) {
random_delays(); // random delay
SubBytes(state);
ShiftRows(state);
if (round == Nr)
break;

MixColumns(state);
AddRoundKey(round, state, RoundKey);

}
AddRoundKey(Nr, state, RoundKey);

}

(a) Random delay implementation (b) Insert random delay between AES rounds

Figure 14: The evaluated implementation of random delay countermeasure in tinyAES
library.

Matching result of SEMI-LOC

CO locations
Ground truth

Target EM trace

Random delays
AES round operation

Matching result v.s. Ground truth

A
m

pl
it

ud
e

af
te

r
no

rm
al

iz
at

io
n

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0 50000 100000 150000 200000 250000

A
m

pl
it

ud
e

af
te

r
no

rm
al

iz
at

io
n

Figure 15: Find COs that are separated by the random delays.

Experiment settings. We observe that random delays are also commonly implemented
as loops, and thus can be detected and isolated from the template construction process by
our approach. As shown in Figure 14, we implemented a classical random delay scheme on
the tinyAES library by inserting a random number of dummy instructions (NOP) between

148 Trace Copilot

each round. The duration of the random delay is controlled by a pseudo-random number
generator and will refresh each time the AES context is initiated (we only consider single-
block AES-ECB encryption here). The hardware environment for trace acquisition remains
the same as Experiment 5.1.
Experiment steps. The experimental steps are almost the same as Experiment 5.1,
except that we insert ground truth triggers at the start (right after the random_delays)
and end (after the AddRoundKey) of each AES round in the target firmware. Additionally,
while generating profiling firmware, we made a small modification to the original code
by temporarily adding the feature of random delay (a NOP-only loop) to the hooking
targets. This ensures that our tool does not overlook it during heuristic filtering due
to its small loop size. In the template construction, segments involved in the random
delay loops will be eliminated, retaining only the CO parts. Note that since the above
process involves knowledge of manual analysis of the random delay loop, we recognize
that it is a semi-automated matching process here, treating it as a payoff for dealing with
countermeasures.
Experiment analysis. Figure 15 demonstrates that our method effectively identifies the
locations of most separated COs in traces with random delays. In contrast, SEMI-LOC
struggles to efficiently identify matches due to its reliance on the continuous occurrence
of COs. In fact, one advantage of our approach is that it can be combined seamlessly
with manual binary-level analysis and patching, which is suitable for bypassing software
countermeasures in the profiling phase.

5.3 Locating complex COs: A case study of ECDSA in MbedTLS
In our observation, few studies have considered automatically locating complex algorithms
such as ECDSA in side-channel traces. A important reason is that the huge execution
time of these algorithms makes their pattern easily identifiable even within long traces.
However, a clear segmentation for these algorithms is still beneficial for SCA or fault
injection attacks. Therefore, using the ECDSA P-256 implementation in MbedTLS as
a case study, we investigate the performance of our scheme for locating its underlying
CO: the scalar multiplication. Specifically, for P-256, MbedTLS eventually performs
scalar multiplication using the ecp_mul_comb_core function. In a nutshell, it implements
a optimized window-based (windows size w = 5 for P-256) scalar multiplication over
Jacobian coordinates using a precomputed table, as shown in Figure 16.

static int ecp_mul_comb_core (...) {
...

while (i != 0) { // The CO loop
MBEDTLS_ECP_BUDGET (MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
--i;
MBEDTLS_MPI_CHK (ecp_double_jac (grp , R, R, tmp)); // double
MBEDTLS_MPI_CHK (ecp_select_comb (grp , &Txi , T, T_size , x[i])); // table index
MBEDTLS_MPI_CHK (ecp_add_mixed (grp , R, R, &Txi , tmp)); // add

}
...
}

Figure 16: Source code of the core CO for the ECDSA P-256 signing in MbedTLS.

Experiment settings. The hardware environment is the same as Experiment 1, except
that the sampling rate of the oscilloscope is reduced to 31.25MS/s, allowing us to capture a
much longer trace suitable for the ECDSA signing process. For the MbedTLS software, we
utilize version 2.16.10 included in the official nRF SDK 17.1.0 for out-of-box development.
However, we identified a performance issue in the MbedTLS wrapper for ECDSA signing

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 149

in this latest nRF SDK version, where the wrapper always re-calculates the precomputed
table unnecessarily. In the latest MbedTLS, precomputed tables for standard curves like
P-256 are hard-coded in library/ecp_curves.c, eliminating this misuse problem. This
bug not only invalidates the benefits of the optimized implementation but also makes the
signing process too long to fit into the acceptable range of our laboratory oscilloscope.
Fortunately, the issue can be easily resolved by integrating hard-coded precomputed tables
during signature initialization, as done in the newer MbedTLS versions. Other than this
fix and the insertion of ground truth triggers, we do not make any changes to the nRF
SDK as well as the MbedTLS library.

To simulate the real operating environment, we add other cryptographic (dummy
AES-128 operations) as well as non-cryptography operations (CoreMark benchmarking
code) as noise around the ECDSA signing call (refer to Figure 17(d) for details).
Experiment steps. The experimental steps mirror those of Experiment 5.1, with the
addition of ground truth triggers before and after the CO loops in Figure 16.

(a) The target trace. (b) Matching with low-pass template.

Band-pass feature

Low-pass feature

(c) Spectrogram of the profiling trace.

ECDSA P-256 Siging Dummy
CoreMark

Dummy
AES-128
Rounds

Scalar
multiplication

(d) Matching with band-pass template.

Figure 17: The experiment result for locating the scalar multiplication CO within the
target trace using a single profiling trace.

Results and analysis. Figure 17(a) presents a raw EM side-channel trace we collected
from the target device, which contains not only the entire ECDSA P-256 signing process
but also noise from the AES-128 and CoreMark code, making it difficult to clearly draw
the boundary of the target CO. We first adopt the same frequency template matching
strategy used in the previous experiment on AES CO, and the initial results are shown
in Figure 17(b). However, it is hardly possible to locate the CO from the similarity
score, especially for separating from AES-128 operations. To investigate we generated
the spectrogram of a well-segmented trace captured on firmware #1, as shown in Figure

150 Trace Copilot

17(c). The spectrogram analysis reveals that the characteristics of scalar multiplication CO
mainly appear in the high-frequency range. In the low-frequency domain, however, they
are very similar to AES-128, making them difficult to distinguish. Therefore, we improve
the method by focusing only on the bandpass-filtered (2.1 · 107 − 2.5 · 107Hz) frequency
information in template construction and matching, and obtain the matching results in
Figure 17(d). In the improved results, the scalar multiplication CO is well separated from
other cryptographic or non-cryptographic operations, demonstrating the effectiveness of our
method. Determining such starting/ending positions of scalar multiplication accelerates
classical SCA on ECDSA, where the attacker typically recovers the highest or lowest bits
of the nonce from the side-channel information near these positions. Moreover, it also
enables the attacker to accurately set the trace acquisition timing and duration for the
region of interest, further improve the overall analytical efficiency.

We also attempted to compare the performance of analyzing this side-channel trace
with the SEMI-LOC tool. However, we directly encountered an Out-of-Memory error on
our RTX3090 GPU (24GB memory). This issue likely arises from the excessive width of the
ECC point double/add primitive, which is ∼200,000 sample points long in the side-channel
trace. The open-source implementation of SEMI-LOC is parallelized according to the
points within the CO or with the whole trace, making it exceed the computing resource
limits of available devices in our laboratory. In addition, the SEMI-LOC paper mentions
that the time complexity of the method is O(w · |t| · r), where w is the CO’s width, |t| is
the length of the whole trace and r is the rounds number of repeated COs. However, all of
these parameters in the ECDSA signing are hundreds or thousands of times larger than
those of AES evaluated in their experiments, further making this comparison infeasible.

5.4 Assisting side-channel analysis of real-world cryptographic library
without source code

Experiment settings. In this experiment, we examine the practicality of the proposed
tool for real-world complex embedded cryptographic programs. We choose SBSFU [STMa],
an official secure boot implementation of the STM32 platform for our analysis. It uses
X-CUBE-CRYPTOLIB as the backend cryptographic engine, a closed-source cryptography
library developed by STMicroelectronics. The hardware platform for our experiment is
STM32F413H-DISCO, and we target the latest SBSFU (version 2.6.2) at the time of
writing. The side-channel traces are obtained using the same setting as the previous
experiment, with the exception of reducing the oscilloscope sampling rate to 125 MS/s,
thereby enabling a longer sampling duration.
Experiment steps. We first analyze the behavior of SBSFU. With default settings, it
provides two security applications:

• Secure boot: during a normal boot process, SBSFU checks the ECDSA signatures of
the header and body of an application program stored in FLASH. If the verification
succeeds, it will jump to the application for execution.

• Secure firmware update: in upgrade mode, SBSFU expects to receive a new applica-
tion through the USB port using the Ymodem protocol [For86]. It will first verify
the ECDSA signature and decrypt the application body using AES128-CBC with a
pre-installed key.

Despite the availability of a newer release (4.1.0) of X-CUBE-CRYPTOLIB, SBSFU
utilizes an outdated version (3.0.0). Our reverse engineering efforts revealed that the
underlying AES implementation6 in this version lacks side-channel protection. However,
since the decryption is performed only after a long jittery USB communication, the location

6AES_general_SW_enc function in libSTM32CryptographicV3.0.0_CM4_GCC_ot.a

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 151

Erase the flash sections
for the decrypted firmware

The first batch of AES-128 CBC decryptions

(a) The target trace and ground truth signal. (b) Our matching result (zoomed-in).

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e7

0.2

0.0

0.4

0.6

0.8

1.0

(c) Matching result of SEMI-LOC.

0.2

0.4
0.6

0.8
1.0

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75
1e7

0.0
-0.2

-0.4

(d) Matching result of our approach.

Figure 18: The experiment result for locating the first round of AES-128 in the upgrading
process of the SBSFU using a single profiling trace.

on the side-channel trace is difficult to identify, as shown in Figure 18(a). For such a
real-world challenge in side-channel analysis, our tool automatically locates the AES CO
in it by following steps:

1. Prepare the target firmware: We use the official SBSFU demo that comes with the
STM32F413H-DISCO board, the only change is to insert GPIO triggers before and
after the call to the firmware decryption function7 to annotate the ground truth.

2. Prepare the profiling firmware: We create firmware that links the X-CUBE-CRYPTO
LIB library and invokes the AES_CBC_Decrypt function for performing dummy
encryption.

3. Acquire the traces: For the target device, we developed a Python script to upload the
encrypted firmware to SBSFU and notify the oscilloscope to acquire the side-channel
signal. On the profiling device, we do exactly the same as in the previous experiment
to obtain the annotated side-channel trace and build the CO templates.

4. Get the result: The collected target traces are fed into our tool for template-matching.

Results and analysis. In the experiment, we find that SBSFU decrypts in a 512-byte
batch and initiates a FLASH erase operation upon completing the first batch to free up more
space for subsequent decryption. Consequently, the side-channel traces exhibit segregation
between the first and following AES blocks, interspersed with FLASH operations. Note
that failing to find the first batch of AES encryptions could result in a wrong correlation to
ciphertext and a complete failure in side-channel attacks. However, discovering it from long
and noisy traces without binary-assisted analysis poses a challenging task, highlighting the
importance of our study direction.

7The call to SE_Decrypt_Append in sfu_fwimg_swap.c

152 Trace Copilot

The matching result for the overall target trace is shown in Figure 18(c). The difference
between the rest of the trace and the peak portion is not as significant as in the previous
experiments. We attribute it to the fact that using basic spectrum correlation matching
needs to be improved on noisy devices. Nevertheless, we still obtained recognizable results
using only one trace from the profiling device. In contrast, the results given by SEMI-LOC
do not precisely indicating the real location of the CO. Interestingly, the result for this
real-world side-channel trace reveals a similar general trend for both schemes, indicating
an inherent similarity in the two loop-oriented approaches.

5.5 Performance analysis
Experiment settings. In this section, we examine the performance of our implemented
tool from the following two perspectives:

• Time consumption for CO extraction and instrumentation in binary: The runtime
efficiency of performing binary analysis determines the complexity and scale of the
firmware we can analyze, and therefore our scalability.

• Storage overhead of the modified firmware: The firmware will be larger than the orig-
inal after instrumenting. Since embedded systems often exhibit storage constraints,
the space overhead shapes our feasibility in the real world.

For the analysis efficiency, we evaluate our analysis tool against two industrial-level
open-source cryptographic libraries, MbedTLS (version 3.4.0) and WolfSSL (version 5.6.4).
Specifically, we choose four commonly employed cryptographic primitives (ECDSA, AES-
128-CBC, AES-128-GCM, and SHA256) and created corresponding firmware. For each
of the test firmware, we run our tool to find all possible CO loops in the binary, without
specifying the target function list. All test firmware is compiled using Arm GCC 13.2.0
with the optimization level set to O2 and the target platform as Cortex-M4. The analyses
are performed on a laptop computer with an AMD 4750U CPU and 32GB RAM.

To analyze storage space consumption trends in relation to instrumented loops count,
we created a firmware that contains most of the cryptographic functions in MbedTLS
3.4.0, artificially limiting the number of COs that are instrumented and then recording the
size of the patched binary. This benchmark firmware has an size of 379KB and runs on an
nRF52840 development board with a FLASH size of 1MB. As a comparison, we also used
the original PIFER tool to instrument at the same locations we extracted and checked the
size of the generated binary.
Results and analysis.

Table 1: Processing time and binary size overhead for CO loops instrumentation.

Library
Algorithm

Index CO loops
instrumented

Textract

(s)
Tinstrument

(s)
∆size

(KB)

MbedTLS

AES-128-CBC 10 21.305 2.711 0.63
AES-128-GCM 33 24.173 2.789 1.79

ECDSA 126 28.752 3.209 9.00
SHA256 6 20.873 2.657 0.38

WolfSSL

AES-128-CBC 9 21.895 2.734 0.59
AES-128-GCM 13 22.513 2.774 0.72

ECDSA 74 28.109 3.115 3.98
SHA256 7 21.068 2.765 0.47

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 153

0

1

2

3

4

5

6

7

8

9

10

10 20 40 60 80 100

Original PIFER Our implementation

Figure 19: Storage space overhead from instrumenting different numbers of COs (KB).

Table 1 shows the results of the time overhead experiment for binary analysis of the
firmware. From Table 1, we can observe that the extraction time Textract increases with
more COs in the firmware. Overall, our tool can extract the COs corresponding to these
algorithms within 30s and perform the instrumentation within a few seconds, demonstrating
the capability of our tool to handle real-world cryptographic implementations. The growth
in binary size after instrumentation ∆size shows that our tool can handle real-world
cryptographic primitives with storage overhead suitable for most Cortex-M platforms
[STMc]. Figure 19 illustrates the storage overhead caused by the instrumentation, and our
improved implementation reduces storage usage by approximately 50% compared to the
original PIFER tool.

5.6 Conclusion of the evaluation
In general, the experimental results validate the effectiveness, flexibility, and robustness
of our approach. Experimental results on long traces show that our tool is capable of
reducing labor in locating and aligning COs, which are typically the initial steps in SCA.
In the experiment on AES with random delay protection, our tool demonstrates the
flexibility to address side-channel countermeasures collaborating with manual analysis.
The ECDSA signing experiment indicates that our method can also be fine-tuned to locate
significantly complex COs. Comparisons with SEMI-LOC illustrate that our approach
performs better in the cases of jittery/noisy traces and CO discontinuities due to side-
channel countermeasures. The experiment on the real-world closed-source cryptography
library and the comprehensive performance analysis further verify the practicality of our
implementation.

6 Discussion
Our proposed method allows the automatic localization of COs in the side channel traces
of a target device under binary code-only conditions, considerably reducing manual efforts
when performing SCA. However, as with many real-world tools, limitations exist. The
following discussion aims to clarify its current scope of application as well as possible
future directions.

6.1 Limitations
• Code obfuscation: Our approach aids side channel analysis mainly with the

help of the information in the binary, but the code obfuscation is meant to hide
it. Therefore it is ineffective against advanced obfuscation techniques(e.g., virtual

154 Trace Copilot

machine protection [SBC+22]). Fortunately, such obfuscation is less common in
resource-constrained embedded devices compared to x64 platforms.

• The COs not implemented in loops: Our approach currently does not address
cases where CO is outside a loop in the binary code, such as loop unrolling for
repeated symmetric cryptographic operations. Nevertheless, asymmetric COs are
still typically in loop form, and embedded firmware projects often prefer not to unroll
loops due to storage overhead.

• Availability of the profiling device: As in most side-channel analyses, we assume
that a controllable device of the same model with similar side-channel characteristics
is available. Consequently, our method is not applicable when such a device is not
available at all or when there are significant differences between the two devices.
However, performance analysis or reverse engineering assistance against the target
binary firmware on a single controllable device is still feasible.

6.2 Future work
• Handling of more general COs: For the efficiency of the binary analysis and the

space overhead of the instrumentation, we currently focus on COs that appear in
loop form, which is common in memory-constrained embedded devices. Extending
it for loop-unrolling COs requires two steps: 1) identify the starting and/or ending
instruction of each unrolled round in the binary program as the boundaries, and
2) perform instrumentation at those non-jump instructions. Existing approaches
[CFM12][XMW17][CSC+24] could assist with Step 1, though they may require
dynamic analysis which is more challenging for embedded firmware. Step 2 is
straightforward since PIFER already supports fine-grained instrumenting for almost
all instructions, and one only need to restore the processing code that we removed
for storage optimization. In summary, the main effort therein lies in pure software
analysis, which we leave to future work to keep this paper focused on bridging the
binary information to the side-channel traces.

• Handling of read-only code. In this paper we assist in side-channel analysis by
injecting additional code into the binary firmware. However, read-only BootROMs
are also frequently the subject of side-channel or fault injection analysis, which
are not modifiable at all. Anyway, tracing and analyzing BootROM execution is
inherently challenging. Future work may explore the possibility of utilizing the same
hooking technique to relocate such read-only code to be executed at mutable memory.

• Using side-channel information to supplement binary analysis: In this
paper we show how to use binary analysis to assist in side-channel analysis. However,
the opposite direction is also an interesting issue. For example, we have seen
cryptographic operations with unique side-channel information features, is it feasible
to apply these features to enhance the identification of complex cryptographic
functions (e.g., malware with obfuscation) in binary? The framework we propose in
Section 3 that bridges binary code to side-channel traces makes it possible to answer
this question, but that is beyond the scope of this paper.

• Integration of more advanced template-matching: As an open-source tool, we
could integrate more advanced template-matching techniques into existing frameworks
in the future.

• Supporting more architectures: Our implementation currently supports all ARM
Cortex-M processors, the most widely used embedded platform. Extending support
to architectures like RISC-V will require new binary instrumentation mechanisms,

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 155

posing an interesting yet challenging software engineering task. Nevertheless, the
framework presented in this paper is theoretically architecture-independent, enabling
effective migration to various embedded platforms.

7 Conclusion
In this paper, we focused on the challenges of side-channel analysis in real-world scenarios
where only binary programs are available. We have introduced a novel framework that
utilizes binary information to automate the process of locating COs in side-channel traces.
Our solution involves mapping the execution flow of binary instructions onto the side-
channel trace through static binary instrumentation and retrieving binary instruction
addresses that correspond to the segmenting boundaries of the COs within the trace.
By identifying the mapping points of these instructions, we can accurately label the
side-channel data segments and locate the COs within traces collected from target devices.

We demonstrated the effectiveness of our proposed method on multiple different devices
and widely used software cryptographic implementations. Experimental results indicated
that we can accurately locate the COs in the trace collected from the target device
using only binary information and a profiling device. The performance evaluation has
confirmed that the runtime and storage overheads of the approach are practical for real-
world applications. Our open-source release enables others to utilize and enhance this
framework for more binary and side-channel co-analysis. Potential future work includes
relocating read-only BootROM using similar instrumentation techniques and alternatively
leveraging side-channel information to improve the detection of cryptographic functions
within embedded binary programs.

Acknowledgements
This work is supported in part by the National Natural Science Foundation of China under
Grant No.U2336210, No.62472286, and in part by the Startup Fund for Young Faculty at
SJTU (SFYF at SJTU) under Grant No.24X010500123.

References
[Alt] Matthew Alt. Glitching in 3D Low Cost EMFI Attacks. https://

voidstarsec.com/csw-2024/. (Accessed on 03/21/2024).

[ARMa] ARM MTB. https://developer.arm.com/documentation/100230/
0004/jfa1432119346148. (Accessed on 03/21/2024).

[ARMb] Using DWT and other methods to count executed instructions on Cortex-M.
https://developer.arm.com/documentation/ka001499/latest/. (Ac-
cessed on 06/27/2024).

[ARMc] ARM. An open source, portable, easy to use, readable and flexible
TLS library. https://github.com/Mbed-TLS/mbedtls. (Accessed on
03/21/2024).

[Boo20] Jeremy Boone. There’s A Hole In Your SoC: Glitching The MediaTek
BootROM, 2020.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, 2020.

https://voidstarsec.com/csw-2024/
https://voidstarsec.com/csw-2024/
https://developer.arm.com/documentation/100230/0004/jfa1432119346148
https://developer.arm.com/documentation/100230/0004/jfa1432119346148
https://developer.arm.com/documentation/ka001499/latest/
https://github.com/Mbed-TLS/mbedtls

156 Trace Copilot

[CFM12] Joan Calvet, José M Fernandez, and Jean-Yves Marion. Aligot: Crypto-
graphic function identification in obfuscated binary programs. In Proceedings
of the 2012 ACM conference on Computer and communications security,
pages 169–182, 2012.

[CLC+22] Marco Casagrande, Eleonora Losiouk, Mauro Conti, Mathias Payer, and
Daniele Antonioli. Breakmi: Reversing, exploiting and fixing xiaomi fitness
tracking ecosystem. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 330–366, 2022.

[CSC+24] Guoqiang Chen, Xiuwei Shang, Shaoyin Cheng, Yanming Zhang, Weiming
Zhang, and Nenghai Yu. FoC: Figure out the Cryptographic Functions in
Stripped Binaries with LLMs. arXiv preprint arXiv:2403.18403, 2024.

[CZLG21] Pei Cao, Chi Zhang, Xiangjun Lu, and Dawu Gu. Cross-device profiled side-
channel attack with unsupervised domain adaptation. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 27–56, 2021.

[DBMP23] Luca Di Bartolomeo, Hossein Moghaddas, and Mathias Payer. ARMore:
Pushing Love Back Into Binaries. In Proceedings of the 32nd USENIX
Security Symposium, 2023.

[EEM09] EEMBC. MCU Benchmark, CoreMark. https://www.eembc.org/
coremark/, 2009.

[ET] Langer EMV-Technik. Langer mfa 01 set. https://www.langer-emv.de/
en/product/. (Accessed on 03/21/2024).

[For86] Chuck Forsberg. Xmodem/Ymodem Protocol Reference. http://www. com-
monsoftinc. com/Babylon_Cpp/Documentation/Res/KYModem. htm, 1986.

[Ghia] Ghidra. https://ghidra-sre.org/. (Accessed on 04/20/2023).

[ghib] Ghidra documentation: Class dominator. https://ghidra.re/
ghidra_docs/api/ghidra/util/graph/Dominator.html. (Accessed on
03/21/2024).

[ghic] Ghidra Headless Analyzer README. https://github.
com/NationalSecurityAgency/ghidra/blob/master/Ghidra/
RuntimeScripts/Common/support/analyzeHeadlessREADME.html. (Ac-
cessed on 05/24/2024).

[Gmb] SEGGER Microcontroller GmbH. J-trace streaming trace probes. https:
//www.segger.com/products/debug-probes/j-trace/. (Accessed on
03/21/2024).

[Gui] Ilfak Guilfanov. Findcrypt. https://hex-rays.com/blog/findcrypt/.
(Accessed on 03/21/2024).

[Hér20] Olivier Hériveaux. Black-box laser fault injection on a secure memory.
In Symposium sur la sécurité des technologies de l’information et des
communications-SSTIC 2020, 2020.

[Hér22] Olivier Hériveaux. Triple exploit chain with laser fault injection on a
secure element. In 2022 Workshop on Fault Detection and Tolerance in
Cryptography (FDTC), pages 9–17. IEEE, 2022.

https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://www.langer-emv.de/en/product/
https://www.langer-emv.de/en/product/
https://ghidra-sre.org/
https://ghidra.re/ghidra_docs/api/ghidra/util/graph/Dominator.html
https://ghidra.re/ghidra_docs/api/ghidra/util/graph/Dominator.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/RuntimeScripts/Common/support/analyzeHeadlessREADME.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/RuntimeScripts/Common/support/analyzeHeadlessREADME.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/RuntimeScripts/Common/support/analyzeHeadlessREADME.html
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/debug-probes/j-trace/
https://hex-rays.com/blog/findcrypt/

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 157

[Inc] WolfSSL Inc. The wolfSSL library. https://github.com/wolfSSL/
wolfssl/. (Accessed on 03/21/2024).

[JAH+24] Ling Jiang, Junwen An, Huihui Huang, Qiyi Tang, Sen Nie, Shi Wu, and
Yuqun Zhang. BinaryAI: Binary Software Composition Analysis via Intelli-
gent Binary Source Code Matching. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, pages 1–13, 2024.

[JSO20] JSOF. 19 Zero-Day Vulnerabilities Amplified by the Supply Chain. https:
//www.jsof-tech.com/disclosures/ripple20/, June 2020.

[Key] KeystoneHQ. Keystone3: Best Open Source Cold Wallet and Hardware Wal-
let. https://github.com/KeystoneHQ/keystone3-firmware/releases/
tag/1.3.4. (Accessed on 03/21/2024).

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology—CRYPTO’96: 16th
Annual International Cryptology Conference Santa Barbara, California, USA
August 18–22, 1996 Proceedings 16, pages 104–113. Springer, 1996.

[kok] kokke. Small portable AES128/192/256 in C. https://github.com/kokke/
tiny-AES-c. (Accessed on 03/21/2024).

[LDMPT15] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. SoC it to
EM: electromagnetic side-channel attacks on a complex system-on-chip. In
Cryptographic Hardware and Embedded Systems–CHES 2015: 17th Interna-
tional Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings
17, pages 620–640. Springer, 2015.

[LGF15] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. Automated
identification of cryptographic primitives in binary code with data flow graph
isomorphism. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, pages 203–214, 2015.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention
to raw traces: A deep learning architecture for end-to-end profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 235–274, 2021.

[MMW21] Carlo Meijer, Veelasha Moonsamy, and Jos Wetzels. Where’s crypto?:
Automated identification and classification of proprietary cryptographic
primitives in binary code. In 30th USENIX Security Symposium (USENIX
Security 21), pages 555–572, 2021.

[MRBT21] Damiano Melotti Maxime Rossi Bellom and Philippe Teuwen. Blackhat USA
2021: A Titan M Odyssey. https://i.blackhat.com/EU-21/Wednesday/
EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf, 2021.

[MWLGP12] Felix Matenaar, Andre Wichmann, Felix Leder, and Elmar Gerhards-Padilla.
CIS: The crypto intelligence system for automatic detection and localization
of cryptographic functions in current malware. In 2012 7th International
Conference on Malicious and Unwanted Software, pages 46–53. IEEE, 2012.

[NS] Moritz Schloegel Nico Schiller. Unchained Skies: A Deep Dive into Reverse
Engineering and Exploitation of Drones. https://mschloegel.me/slides/
slides_recon23_drone_security.pdf. (Accessed on 03/21/2024).

https://github.com/wolfSSL/wolfssl/
https://github.com/wolfSSL/wolfssl/
https://www.jsof-tech.com/disclosures/ripple20/
https://www.jsof-tech.com/disclosures/ripple20/
https://github.com/KeystoneHQ/keystone3-firmware/releases/tag/1.3.4
https://github.com/KeystoneHQ/keystone3-firmware/releases/tag/1.3.4
https://github.com/kokke/tiny-AES-c
https://github.com/kokke/tiny-AES-c
https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Rossi-Bellom-2021_A_Titan_M_Odyssey-wp.pdf
https://mschloegel.me/slides/slides_recon23_drone_security.pdf
https://mschloegel.me/slides/slides_recon23_drone_security.pdf

158 Trace Copilot

[NSUH22] Shoei Nashimoto, Daisuke Suzuki, Rei Ueno, and Naofumi Homma. Bypass-
ing isolated execution on risc-v using side-channel-assisted fault-injection
and its countermeasure. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 28–68, 2022.

[One] OnekeyHQ. Onekey hardware wallet firmware. https://github.
com/OneKeyHQ/firmware/releases/tag/touch%2Fv4.7.0. (Accessed on
03/21/2024).

[QZZG23] Shipei Qu, Xiaolin Zhang, Chi Zhang, and Dawu Gu. Abusing processor ex-
ception for general binary instrumentation on bare-metal embedded devices.
arXiv preprint arXiv:2311.16532, 2023.

[RLMI21] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert.
A side journey to titan. In 30th USENIX Security Symposium (USENIX
Security 21), pages 231–248, 2021.

[SBC+22] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann,
Julius Basler, Thorsten Holz, and Ali Abbasi. Loki: Hardening code
obfuscation against automated attacks. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3055–3073, 2022.

[Sem] Nordic Semiconductor. nRF52840 - Bluetooth 5.3 SoC. https://www.
nordicsemi.com/products/nrf52840. (Accessed on 03/12/2024).

[SHC20] Majid Salehi, Danny Hughes, and Bruno Crispo. µSBS: Static binary
sanitization of bare-metal embedded devices for fault observability. In
Proceedings of the 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 381–395. USENIX Association,
2020.

[STMa] STMicroelectronics. Secure boot and secure firmware update software ex-
pansion for STM32Cube. https://www.st.com/en/embedded-software/
x-cube-sbsfu.html. (Accessed on 03/21/2024).

[STMb] STMicroelectronics. Stm32 cryptographic firmware library software ex-
pansion for stm32cube. https://www.st.com/en/embedded-software/
x-cube-cryptolib.html. (Accessed on 03/21/2024).

[STMc] STMicroelectronics. STM32 family of 32-bit microcontroller. https:
//www.st.com/content/st_com/en/stm32-mcu-developer-zone/
mcu-portfolio.html. (Accessed on 07/16/2024).

[TBW+22] Jens Trautmann, Arthur Beckers, Lennert Wouters, Stefan Wildermann,
Ingrid Verbauwhede, and Jürgen Teich. Semi-automatic locating of crypto-
graphic operations in side-channel traces. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 345–366, 2022.

[Tre] Trezor firmware. https://github.com/trezor/data/tree/master/
firmware/t2b1. (Accessed on 03/21/2024).

[VdHOGT21] Jan Van den Herrewegen, David Oswald, Flavio D Garcia, and Qais Temeiza.
Fill your boots: Enhanced embedded bootloader exploits via fault injection
and binary analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 56–81, 2021.

https://github.com/OneKeyHQ/firmware/releases/tag/touch%2Fv4.7.0
https://github.com/OneKeyHQ/firmware/releases/tag/touch%2Fv4.7.0
https://www.nordicsemi.com/products/nrf52840
https://www.nordicsemi.com/products/nrf52840
https://www.st.com/en/embedded-software/x-cube-sbsfu.html
https://www.st.com/en/embedded-software/x-cube-sbsfu.html
https://www.st.com/en/embedded-software/x-cube-cryptolib.html
https://www.st.com/en/embedded-software/x-cube-cryptolib.html
https://www.st.com/content/st_com/en/stm32-mcu-developer-zone/mcu-portfolio.html
https://www.st.com/content/st_com/en/stm32-mcu-developer-zone/mcu-portfolio.html
https://www.st.com/content/st_com/en/stm32-mcu-developer-zone/mcu-portfolio.html
https://github.com/trezor/data/tree/master/firmware/t2b1
https://github.com/trezor/data/tree/master/firmware/t2b1

Shipei Qu, Yuxuan Wang, Jintong Yu, Chi Zhang�, Dawu Gu� 159

[WGP21] Lennert Wouters, Benedikt Gierlichs, and Bart Preneel. My other car is
your car: compromising the Tesla Model X keyless entry system. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
149–172, 2021.

[WGP22] Lennert Wouters, Benedikt Gierlichs, and Bart Preneel. On the susceptibility
of Texas Instruments SimpleLink platform microcontrollers to non-invasive
physical attacks. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 143–163. Springer, 2022.

[WJC+09] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace.
Reformat: Automatic reverse engineering of encrypted messages. In Com-
puter Security–ESORICS 2009: 14th European Symposium on Research in
Computer Security, Saint-Malo, France, September 21-23, 2009. Proceedings
14, pages 200–215. Springer, 2009.

[Wou22] Lennert Wouters. Glitched on earth by humans: a black-box security
evaluation of the SpaceX starlink user terminal. DEF CON, 2022.

[XMW17] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic function
detection in obfuscated binaries via bit-precise symbolic loop mapping. In
2017 IEEE Symposium on Security and Privacy (SP), pages 921–937. IEEE,
2017.

	Introduction
	Background
	Locating COs in a side-channel trace
	Binary instrumentation on embedded devices
	Overview

	Mapping the program flow to the side-channel trace
	Locate appropriate instructions
	Static binary instrumentation for embedded firmware
	Eliminate noise and annotate the trace

	Automatically locating cryptographic operations in side-channel traces using binary information
	Step 1: Function level cryptography code detection in the binary
	Step 2: Locating fine-grained COs boundaries for SCA interests
	Template construction and locating in target traces
	Implementation and open source release

	Evaluation
	Locating COs in long and noisy traces
	Practicality in the presence of side-channel countermeasures
	Locating complex COs: A case study of ECDSA in MbedTLS
	Assisting side-channel analysis of real-world cryptographic library without source code
	Performance analysis
	Conclusion of the evaluation

	Discussion
	Limitations
	Future work

	Conclusion

