
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 340–366. DOI:10.46586/tches.v2025.i1.340-366

Extending Randomness-Free First-Order Masking
Schemes and Applications to Masking-Friendly

S-boxes
Lixuan Wu1,2, Yanhong Fan1,2,3, Weijia Wang3,1,2, Bart Preneel4

and Meiqin Wang3,1,2(�)
1 School of Cyber Science and Technology, Shandong University, Qingdao, China

yanhongfan@sdu.edu.cn,lixuanwu@mail.sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan, China
3 Quan Cheng Shandong Laboratory, Jinan, China

{wjwang,mqwang}@sdu.edu.cn
4 imec-COSIC, KU Leuven, Leuven, Belgium

bart.preneel@esat.kuleuven.be

Abstract.
Masking has emerged as a widely adopted countermeasure against side-channel attacks.
However, the implementation of masking schemes faces several challenges, including
hardware area, latency and the overhead associated with fresh randomness generation.
To eliminate the implementation cost caused by fresh randomness, Shahmirzadi et
al. introduced a methodology for constructing 2-share first-order masking schemes
without randomness at CHES 2021. In this work, we extend Shahmirzadi et al.’s
method to find masked implementations for more S-boxes and further reduce the
hardware overhead. We propose the concept of a non-linear compression layer, a
comprehensive share assignment strategy based on a linear compression layer, and
corresponding optimization techniques. Based on these techniques, we construct
the first randomness-free first-order masking schemes for the PRINCE S-box and
its inverse, reduce the hardware overhead of masking schemes for multiple S-boxes,
and design new masking-friendly S-boxes. Particularly for the SKINNY S-box, the
reduction is 21% and 15% in area and power consumption, respectively. To validate
the security of masked implementations, we not only employ the automated tools
SILVER and PROLEAD but also conduct FPGA-based experiments.
Keywords: Extended first-order masking · Non-linear compression · Friendly mask-
ing scheme · PRINCE

1 Introduction
Side-Channel Analysis (SCA) attacks [Koc96, KJJ99] exploit information on timing and
power consumption to extract secret variables from cryptographic devices. Due to this
discovery, they have attracted considerable attention from researchers and practitioners.
Embedded devices running cryptographic algorithms are particularly vulnerable to such
attacks. To mitigate the severe threat from SCA attacks, researchers have proposed a
large number of countermeasures, among which masking is the most popular due to its
sound theoretical foundations.

The Ishai-Sahai-Wagner (ISW) d-probing model [ISW03] shows how to correctly imple-
ment a masking scheme in a software approach. This model assumes that an adversary can

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.340-366
mailto:yanhongfan@sdu.edu.cn, lixuanwu@mail.sdu.edu.cn
mailto:wjwang@sdu.edu.cn,mqwang@sdu.edu.cn
mailto:bart.preneel@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 341

probe the circuit in d locations simultaneously. However, adapting masking schemes for
hardware platforms remains challenging, because the d-probing model does not cover some
hardware physical defaults. Many masking schemes [Tri03, OMPR05] have been shown
to be vulnerable because of glitches, which are regarded as one of the most challenging
hardware physical defaults. In this respect, the glitch-extended probing model of Faust et
al. [FGP+18] provides a comprehensive formal framework for analyzing and addressing
the impact of glitches on hardware designs. This model assumes each probe placed on
a combinatorial circuit propagates backward to either the primary inputs or the last
synchronization point (e.g., registers).

As the first implementation strategy, Threshold Implementation (TI) [NRR06] is widely
studied to resist glitches in hardware implementations as it offers security proofs based on
a solid theory. In classic TI, the number of shares for a non-linear function is td+ 1, where
t is the algebraic degree of this function and d is the desired security order, which means
that any set of up to d intermediate variables does not leak key-dependent information. In
order to reduce the number of input shares, [RBN+15, GMK16] have demonstrated that
d+1 shares are sufficient to achieve d-order security. In this approach, a layer of registers is
inserted to block the propagation of glitches within a masking scheme. However, it should
be noted that this technique often requires the inclusion of randomness. For instance, the
2-input AND gate with first-order security requires at least 1-bit randomness [GMK16].

To eliminate the reliance on randomness, Shahmirzadi et al. [SM21a] proposed a
methodology to construct randomness-free first-order masking schemes for a Boolean
function. Fig. 1(a) shows a masked implementation of a 2-input AND gate, where a0/1 and
b0/1 are the inputs and x0/1 are the outputs. This implementation consists of two layers,
the one before the registers is called the expansion layer, where certain properties need to be
satisfied (e.g., non-completeness [NRR06], identical joint probability distribution [SM21a],
etc.), and the one after the registers is called the compression layer, where the results from
registers are XOR-ed to generate the final outputs.

𝑎𝑎0 𝑏𝑏1𝑏𝑏0𝑎𝑎1

~ ~

𝑎𝑎1

𝑥𝑥0 𝑥𝑥1

~ ~ ~ ~

𝑏𝑏0 𝑎𝑎1𝑎𝑎0𝑏𝑏1

~ ~

𝑏𝑏1

𝑥𝑥0 𝑥𝑥1

(a) Shahmirzadi et al.’s method.

𝑎𝑎0 𝑏𝑏1𝑏𝑏0𝑎𝑎1

~ ~

𝑎𝑎1

𝑥𝑥0 𝑥𝑥1

~ ~ ~ ~

𝑏𝑏0 𝑎𝑎1𝑎𝑎0𝑏𝑏1

~ ~

𝑏𝑏1

𝑥𝑥0 𝑥𝑥1

(b) Our extended method.

Figure 1: Masked implementations of a 2-input AND gate.

Shahmirzadi et al. [SM21a] then applied this method to larger circuits (rather than an
AND gate), such as S-boxes of block ciphers. They proposed to construct masking schemes
for each coordinate function of this S-box individually, and then filter out a combination
of each masked coordinate function, which is joint uniform [NRS11]. Fig. 2(a) shows a
schematic for two coordinate functions of an S-box, where a, b, c and d are the inputs, x
and y are the outputs, and the black dashed lines denote the registers. While nullifying
randomness holds significant merit, it is imperative to acknowledge the existence of certain
S-boxes that Shahmirzadi et al.’s method cannot effectively address. A notable illustration

342 Extending Randomness-Free First-Order Masking Schemes

is the PRINCE S-box [BCG+12] and its inverse.

Expansion

Compression

𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑

𝑥𝑥 𝑦𝑦

Expansion

Compression

𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑

𝑥𝑥 𝑦𝑦

Expansion

Compression

(a) Shahmirzadi et al.’s method.

Expansion

Compression

𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑

𝑥𝑥 𝑦𝑦

Expansion

Compression

𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑

𝑥𝑥 𝑦𝑦

Expansion

Compression

(b) Our extended method.

Figure 2: Masked implementations of two Boolean functions.

1.1 Contributions
This paper extends Shahmirzadi et al.’s method by proposing several new techniques that
enable us to find the masked implementations for a wider range of S-boxes but also improve
the hardware performance of multiple S-boxes. The contributions1 are described below.

Masking schemes based on a non-linear compression layer. Taking the 2-input
AND gate as an example, demonstrated in Fig. 1(b), we first propose that a non-linear
compression layer can also be used to construct a masked Boolean function. Due to the
flexibility of non-linear operations, the non-linear compression layer offers two advantages.
Firstly, the integration of the non-linear compression layer significantly expands the design
space of masking schemes, enabling the construction of more masking schemes. Secondly,
the non-linear compression layer is capable of sharing some of the component functions from
the expansion layer within a masking scheme. The technique based on shared component
functions effectively reduces the number of registers and hardware overhead.

Joint masking schemes for multiple Boolean functions. Due to the increased
computational complexity, we propose a joint approach based on the linear compression
layer to construct masking schemes for multiple Boolean functions, such as an S-box. In
this respect, we introduce a comprehensive share assignment strategy that efficiently assigns
the shares of primary inputs to component functions. This strategy can derive all possible
share assignment types and enable the construction of more masking schemes in the linear
compression scenario. Based on the above strategy, we develop a joint masking scheme,
depicted in Fig. 2(b), which consists of a joint expansion layer and a joint compression
layer. Compared with the individual method in Fig. 2(a), the joint method allows for
the sharing of component functions among multiple masked Boolean functions, effectively
reducing the overall number of registers and hardware overhead. Based on the above
techniques, we have not only solved the uniformity issues of the PRINCE S-box and its
inverse, but also further optimized the hardware overhead of masking schemes for multiple
S-boxes. Specifically for the SKINNY S-box, we achieved notable savings of 21% in area
and 15% in dynamic power consumption.

Constructing new masking-friendly S-boxes. Since the aforementioned tech-
niques allow for the construction of more efficient first-order masking schemes without
randomness, we apply them to construct new masking-friendly S-boxes. Based on the work
of [LMC+22] and the proposed masking techniques, we have successfully constructed some

1Our material including detailed masking schemes and their HDL codes is given at
https://github.com/dfhsdkjc243/dabchxmchaeyufdbj.git

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 343

new S-boxes that not only exhibit equivalent cryptographic properties to the PRINCE
S-box and its inverse, but also demonstrate improved hardware masking performance.

1.2 Outline
We provide some essential notions in Sect. 2, before describing the fundamental methodology
of extending the randomness-free first-order masking schemes. In Sect. 3, we present a
detailed description of our proposed techniques, including masking schemes based on a
non-linear compression layer, joint masking schemes for multiple Boolean functions, and an
application of these techniques to design new masking-friendly S-boxes. To demonstrate
the effectiveness of our techniques, we present some case studies and their hardware
performance in Sect. 4. In Sect. 5, we evaluate the security of our implementations.

2 Preliminaries
2.1 Notations and Definitions
We denote binary random variables with lower-case italic x, and the i-th share of a variable
with xi. A capital X(∈ Fn

2 , n > 1) represents a random binary vector, while Xj denotes the
j-th element of the vector X. In a Boolean masking scheme, a secret variable x is divided
into s shares, such that their XOR sum is equal to the secret variable x, i.e., x =

⊕s−1
i=0 xi.

These s shares are generated in two steps: first, s− 1 shares are generated randomly and
independently, and then the last share xs−1 is derived from xs−1 = x⊕

⊕s−2
i=0 xi.

2.2 Probing Security
The masking scheme is a countermeasure that can achieve resistance to side-channel attacks
from the algorithm level. The probing security model [ISW03] is an essential theory to
evaluate the security of masking schemes. Hardware and software implementations require
different masking solutions; this paper focuses on hardware.

In hardware platforms, the path delay of each logic gate can be different, leading
to unpredictable signal transitions at the output of a combinatorial circuit. These un-
predictable signal transitions that are inherent to hardware implementations are called
glitches. To take into account the presence of glitches, Faust et al. [FGP+18] proposed the
glitch-extended probing model, which is the most popular formal framework in the presence
of glitches. In this model, by placing a probe at the output of a gate, the glitch-extended
probe returns all values contributing to the probed wire until the synchronization point
(e.g., registers).

2.3 Masking with d + 1 Shares
According to Threshold Implementations [NRR06], the minimum number of input shares
required equals td + 1, where t is the algebraic degree of the cryptographic function
and d is the desired security order. It has been shown in [RBN+15, GMK16] that we
can use d + 1 input shares to achieve the same security in hardware implementation.
In this implementation scheme, the masked target function is divided into two register-
isolated parts, and fresh randomness is introduced. An example for 2-input AND gate
x = f(a, b) = ab is given in Eq. (1), where a0 and a1 (resp. b0 and b1) are the two shares
of primary input a (resp. b), x0 and x1 are the output shares, and fi(.), 0 ≤ i ≤ 3 are the
component functions, the results of which are stored in registers x′0 to x′3. The above part
is called the expansion layer. In the compression layer, these values stored in registers are
XOR-ed to generate the output shares x0 and x1.

344 Extending Randomness-Free First-Order Masking Schemes

f0(a0, b0) = a0b0 → x′0

f1(a0, b1, r) = a0b1 + r → x′1 x′0 + x′1 = x0
.

f2(a1, b0, r) = a1b0 + r → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 → x′3

(1)

In [SM21a], a methodology is introduced to construct 2-share first-order hardware
implementations without randomness. The 2-share first-order masking scheme of a 2-input
AND gate x = f(a, b) = ab is shown below:

f0(a0, b0) = a0b0 → x′0

f1(a0, b1) = a0b1 + b1 → x′1 x′0 + x′1 = x0
.

f2(a1, b0) = a1b0 → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 + b1 → x′3

(2)

The construction of a masking scheme in Eq. (2) can be transformed into the problem
of finding a set of component functions that meet the following five properties.

Definition 1 (Non-completeness [NRR06]). Every component function is independent of
at least one share of the secret variables. This ensures that the evaluation of individual
component functions does not reveal any information about the secret variables.

Example. Equation (3) gives an expression of the non-completeness with 4 component
functions, where âi and b̂i are the inputs to the component function fi, the binary variables
λi and µi determine which share of secret variables is assigned to fi. For example, the
component function f0 in Eq. (2) is independent of a1 and b1, i.e., λ0 = 0, µ0 = 0.

∀i ∈ {0, 1, 2, 3} : âi = λi · a1 + (1− λi) · a0,

b̂i = µi · b1 + (1− µi) · b0.
(3)

Definition 2 (Identical Joint Probability Distribution [SM21a]). The joint distribution
of a set of variables within a masking scheme remains constant irrespective of the values
taken by the secret input variables.

Example. This property for Eq. (2) is reflected by Eq. (4). Here α and β denote the specific
values of the two joint distributions, respectively. For example, the joint distribution
consisting of the variables x′0 and x′1 takes two times (0, 0), once (1, 0), and once (0, 1).

∀a, b : P (x′0, x′1) = α,

P (x′2, x′3) = β.
(4)

Definition 3 (Balance [SM21a]). In a masking scheme, balance means that regardless of
the values of the secret variables, the value taken by each final output share is equal to 0
and 1 the same number of times.

Example. Equation (5) expresses the balance property for Eq. (2). Here fc0 = f0 + f1,
where X represents the input variables a0, b0 and b1. Similarly, fc1 = f2 + f3, with Y
denoting the input variables a1, b0 and b1. For example, the value of x0 in Eq. (2) is two
times 0 and two times 1, regardless of the values taken by a and b.

∀a, b : | {X|fc0(X) = 0} | = | {X|fc0(X) = 1} |,
| {Y |fc1(Y) = 0} | = | {Y |fc1(Y) = 1} |.

(5)

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 345

Definition 4 (Correctness [NRR06]). To ensure the correctness of the masking scheme,
the XOR sum of all the final output shares is equal to the target function.

Example. The relation x0 + x1 = f(a, b) = ab holds in Eq. (6), where f is the target
Boolean function.

∀a, b : fc0 + fc1 = f. (6)

Definition 5 (Uniformity [NRS11]). For each secret output value f∗, all possible joint
distributions (consisting of all final output shares fc0, fc1, · · ·) with f∗ = fc0 + fc1 + · · ·
are equally likely to occur.

f = f∗ :

P (fc0, fc1, · · ·) =
{
c, if (fc0, fc1, · · ·) is a valid distribution with fc0 + fc1 + · · · = f∗,
0, else,

(7)

where c is a constant.

Example. As an example of Eq. (2), traversing all inputs and all input shares, the
distribution (fc0, fc1) takes six times (0, 0) and six times (1, 1) when the secret output
f∗ = 0. Similarly for f∗ = 1, the distribution (fc0, fc1) takes two times (0, 1) and two
times (1, 0).

Based on the above techniques, searching for some masking schemes without randomness
is feasible. Due to the limited search space of the linear compression layer, it is recognized
that some S-boxes remain unsolved, such as the PRINCE S-box [BCG+12] and its inverse.
In this paper, we propose some new techniques (e.g., the non-linear compression layer and
joint masking schemes) to extend the design space of masking schemes, which not only
address the above challenges but also further optimize the existing masking schemes.

3 New Techniques
This section explains how to extend the first-order masking schemes without randomness.
More specifically, we propose a non-linear compression layer to extend the design space
of masking schemes in Sect. 3.1, and further propose joint masking schemes for multiple
Boolean functions to improve the hardware performance of masking schemes in Sect. 3.2.
As an application, Sect. 3.3 gives a workflow for designing new masking-friendly S-boxes
that benefit from the proposed extended first-order masking techniques.

3.1 Masking Schemes Based on a Non-linear Compression Layer
As stated in [RBN+15, CGF21], the primary role of the compression layer of masking
schemes is to reduce the number of output shares when it exceeds the number of shares
of each individual input. We first propose a new technique called a non-linear compres-
sion layer in Sect. 3.1.1 to achieve this goal. Section 3.1.2 then provides construction
guidelines for a masking scheme utilizing a non-linear compression layer. Additionally,
an optimization technique is introduced to reduce the number of registers and enhance
hardware performance, especially the area and dynamic power consumption.

346 Extending Randomness-Free First-Order Masking Schemes

3.1.1 The Non-linear Compression Layer

Earlier work [RBN+15, SM21a] have used a compression layer composed of only XOR
gates. In other words, there are only linear operations in the compression layer. We
propose the notion of an extended compression layer, i.e., this layer is valid as long as it
can compress the number of output shares, regardless of the types of logic gates. In other
words, the compression layer can be linear or non-linear. Since a linear compression layer
has been widely applied, we will not treat them here. Equation (8) illustrates a non-linear
compression layer for a 2-input AND gate x = f(a, b) = ab.

f0(a0, b0) = a0b0 + 1 → x′0

f1(a1, b0) = a1b0 + a1 + 1 → x′1 x′0x
′
1 = x0

.

f2(a0, b1) = a0b1 + 1 → x′2 x′2x
′
3 = x1

f3(a1, b1) = a1b1 + a1 + 1 → x′3

(8)

Table 1: The distribution of (x′0, x′1), (x′2, x′3) and (x0, x1) with respect to (a, b).

a b
4P (x′0, x′1) 4P (x′2, x′3) 4P (x0, x1)

00 01 10 11 00 01 10 11 00 01 10 11
0 0 0 1 1 2 0 1 1 2 2 0 0 2
0 1 0 1 1 2 0 1 1 2 2 0 0 2
1 0 0 1 1 2 0 1 1 2 2 0 0 2
1 1 0 1 1 2 0 1 1 2 0 2 2 0

Table 2: The computation for (a, b) = (0, 0).

a0 a1 b0 b1 x′0 x′1 x′2 x′3 x0 x1
0 0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 0 1 0 0 0
1 1 1 1 0 1 0 1 0 0

To validate its correctness and security under the glitch-extended probing model, we
list the joint distribution of intermediate values in Table 1 and give an example of how the
first row (i.e., a = 0, b = 0) is computed in Table 2. By substituting the values of each
share of primary inputs (i.e., a0/1 and b0/1) from Table 1 into Eq. (8), the corresponding
values of x0 and x1 can be derived. It is evident that x0 + x1 = x, thereby satisfying the
functionality of a two-input AND gate. The following is the security verification. As shown
in Eq. (8), this is in line with the non-completeness of masking schemes, because only one
share of each input variable is assigned to a component function fi(.), 0 ≤ i ≤ 3. When a
probe is placed on an output share x0, it extends into two probes placed on x′0 and x′1
respectively. Regardless of the values of a and b, the distribution of 4P (x′0, x′1) consistently
equals (0, 1, 1, 2) in Table 1. In other words, (x′0, x′1) is jointly independent of the secret
inputs a and b, which is compatible with an identical joint probability distribution of
Definition 2. Similarly for the other output share x1. Table 1 illustrates the balance of this
scheme, i.e., regardless of the values of a and b, the output share x0 always takes twice 0
and twice 1. The same balance property applies to x1. The uniformity is also fulfilled,
because the distribution 4P (x0, x1) takes six times (0, 0) and six times (1, 1) when x = 0,
and two times (0, 1) and two times (1, 0) when x = 1.

To the best of our knowledge, this is the first time that a non-linear compression

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 347

layer is applied in a masking scheme. Note that Eq. (8) showcases the feasibility of a
non-linear compression layer without implying it as an optimal implementation. Since
non-linear operations offer more flexibility compared to linear operations, the application
of a non-linear compression layer significantly expands the design space of masking schemes
and provides more flexibility.

3.1.2 Optimized Masking Schemes Based on a Non-linear Compression Layer

In a first-order masking scheme for a Boolean function of algebraic degree t, there are at
least 2t component functions in the expansion layer. Based on the flexibility of non-linear
operations, a natural question is whether the compression layer can share some of the
functions of the expansion layer. Inspired by this idea, we propose a model to construct a
masking scheme based on a non-linear compression layer, and give an AND3 example to
illustrate the advantage of our techniques. Finally, we describe the search complexity and
optimization methods.

The Masking Model Based on a Non-linear Compression Layer. The model
includes m+ 2 Boolean functions, with m functions serving as component functions in the
expansion layer, and 2 functions operating in the compression layer. Since the non-linear
operations lead to higher computational complexity, we use a SAT solver to implement
the model and find the corresponding masking scheme for a given Boolean function. More
specifically, the above model is provided in Algorithm 1, where the input consists of an
n-bit target Boolean function and the number of component functions, denoted as m.
The output is the corresponding masking scheme or no solution. Algorithm 1 outlines
the general constraints to constructing a masking scheme, which typically involves m
component functions and 2 compression functions. To develop an optimized masking
scheme, we simply reduce the number of component functions to a value less than 2t,
where t is the algebraic degree of the n-bit target Boolean function.

The first five lines of Algorithm 1 constrain the non-completeness, i.e., each component
function contains at most one share of the secret variable. The binary variables λi, µi,
υi, · · · determine which share is assigned to component function fi, 0 ≤ i ≤ m− 1. The
non-completeness of âi is modeled in Eq. (9), where the value of âi is determined by the
binary variable λi. More specifically, when λi equals 0, âi is assigned a0; otherwise, it is
assigned the value a1.

∀i ∈ {0, 1, · · · ,m− 1} : âi = λi · a1 + (1− λi) · a0. (9)

Lines 6 to 7 illustrate that m+ 2 functions are represented as their algebraic normal
forms (ANFs), where there are m component functions in the expansion layer (i.e., fi, 0 ≤
i ≤ m− 1) and 2 compression functions (i.e., fc0 and fc1). As an example, Eq. (10) is the
corresponding model of a 4-bit component function f0, where li, 0 ≤ i ≤ 15 determines the
specific expression.

f0 =l0 + l1 · â0 + l2 · b̂0 + l3 · ĉ0 + l4 · d̂0 + l5 · â0b̂0 + l6 · â0ĉ0 + l7 · â0d̂0 + l8 · b̂0ĉ0+
l9 · b̂0d̂0 + l10 · ĉ0d̂0 + l11 · â0b̂0ĉ0 + l12 · â0b̂0d̂0 + l13 · â0ĉ0d̂0 + l14 · b̂0ĉ0d̂0+
l15 · â0b̂0ĉ0d̂0.

(10)

For each value of secret variables a, b, c, · · · (line 8), line 9 initializes five hash tables
(i.e., Hu,Hd,Tu,Td and Tc) which will be used to record the joint distributions in the
following operations. Since the values of component functions rely on individual shares
of secret variables, line 10 iterates through each possible value of one share. Lines 11

348 Extending Randomness-Free First-Order Masking Schemes

to 15 describe the role of these hash tables, which is to record some joint distributions
of component functions. More specifically, the hash table Hu serves the purpose of
mapping integer keys ranging from 0 to 2 m

2 − 1 to the corresponding joint distribution
(f0, f1, · · · , fm

2 −1) for each case. The values stored in Hu are the frequency of occurrence
for each respective joint distribution. Similarly, hash table Hd performs the same role but
records the joint distribution (fm

2
, fm

2 +1, · · · , fm−1). As for the hash tables Tu and Td,
their keys correspond to the values of compression functions fc0 and fc1, respectively. The
frequencies of these compression functions are recorded in the respective hash table values.
Following a similar approach, the hash table Tc is responsible for recording the cases of
the joint distribution (fc0, fc1). Line 16 indicates the correctness of the masking scheme,
i.e., the XOR-ed result of final outputs is equal to the target Boolean function f . The
model of correctness is shown in Eq. (11), where fc0 and fc1 are the final output shares
and f is the output of the primary Boolean function.

∀a||b||c|| · · · ∈ {0, 1, · · · , 2n − 1} ,∀a0||b0||c0|| · · · ∈ {0, 1, · · · , 2n − 1} :
fc0 + fc1 = f.

(11)

The subsequent lines 17 to 19 indicate the identical joint distribution, which is modeled
as shown in Eq. (12). The frequency of each joint distribution k (consisted of component
functions f0, f1, · · · , fm

2 −1) stored in hash table Hu remains the same regardless of the
values taken by secret variable j. This operations apply similarly to joint distribution
(fm

2
, fm

2 +1, · · · , fm−1) and the corresponding hash table Hd.

∀j ∈ {0, 1, · · · , 2n − 1} ,∀k ∈
{

0, 1, · · · , 2 m
2 − 1

}
:

Hu0[k] = Huj [k], Hd0[k] = Hdj [k].
(12)

To maintain balance, lines 20 to 21 constrain that each final output (either 0 or 1)
recorded in the hash table Tu and Td, respectively, has an equal frequency. The model of
balance is illustrated in Eq. (13). The frequency of 0 (i.e., Huj [0]) and 1 (i.e., Huj [1]) for
the first output share are equivalent (i.e., 2n

2 = 2n−1), independent of the secret variable j.
The second output share and the corresponding hash table Hdj are similar.

∀j ∈ {0, 1, · · · , 2n − 1} :
Tuj [0] = Tuj [1], Tdj [0] = Tdj [1].

(13)

Lines 22 to 25 constrain the uniformity of the masking schemes, guaranteeing that the
frequency of each possible joint distribution (fc0, fc1) is uniform. The model of uniformity
is shown in Eq. (14). More specifically, when the output f equals 0, there exist only two
cases for the aforementioned distribution: (0, 0) and (1, 1), with their frequencies recorded
as equal in the hash table Tc. Similarly, when the output f equals 1, there are exclusively
two values, (0, 1) and (1, 0), with their frequencies also being the same.

∀j ∈ {0, 1, · · · , 2n − 1} :
{
Tcj [0] = Tcj [3], if f = 0 ,
T cj [1] = Tcj [2], else.

(14)

The operations as described (lines 1 to 25) establish non-completeness, correctness,
identical joint distribution, balance, and uniformity, thereby ensuring the desired properties
and behavior of the masking scheme. Lines 26 to 29 involve the utilization of the SAT
solver to run the above model and return the result. The SAT solver aims to determine
whether a satisfying assignment exists for the given model. If a solution exists, the SAT

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 349

Algorithm 1 The model: whether a masking scheme for an n-bit Boolean function with
m component functions and 2 compression functions can be found
Input: An n-bit Boolean function f .

m : the number of component functions.
Output: Return a masking scheme or NULL.
1: for i = 0 to m− 1 do
2: âi = λi · a1 + (1− λi) · a0 . Non-completeness
3: b̂i = µi · b1 + (1− µi) · b0
4: ĉi = υi · c1 + (1− υi) · c0
5: · · ·
6: fi = li·2n + li·2n+1 · âi + li·2n+2 · b̂i + li·2n+3 · ĉi + · · ·
7: Model two functions with inputs (f0, f1, · · · , fm

2 −1) (resp., (fm
2
, fm

2 +1, · · · , fm−1)):
fc0 = p0 + p1 · f0 + p2 · f1 + p3 · f2 + · · ·
fc1 = q0 + q1 · fm

2
+ q2 · fm

2 +1 + q3 · fm
2 +2 + · · ·

8: for a||b||c|| · · · = j = 0 to 2n − 1 do
9: Initialize five hash tables to zero, donated as Huj ,Hdj ,Tuj ,Tdj ,Tcj .
10: for a0||b0||c0|| · · · = 0 to 2n − 1 do
11: Huj [f0||f1|| · · · ||fm

2 −1] = Huj [f0||f1|| · · · ||fm
2 −1] + 1.

12: Hdj [fm
2
||fm

2 +1|| · · · ||fm−1] = Hdj [fm
2
||fm

2 +1|| · · · ||fm−1] + 1.
13: Tuj [fc0] = Tuj [fc0] + 1
14: Tdj [fc1] = Tdj [fc1] + 1
15: Tcj [fc0||fc1] = Tcj [fc0||fc1] + 1
16: fc0 + fc1 = f . Correctness
17: for k = 0 to 2 m

2 − 1 do
18: Hu0[k] = Huj [k] . Identical joint distribution
19: Hd0[k] = Hdj [k]
20: Tuj [0] = Tuj [1] = 2n−1 . Balance
21: Tdj [0] = Tdj [1] = 2n−1

22: if f = 0 then . Uniformity
23: Tcj [0] = Tcj [3]
24: if f = 1 then
25: Tcj [1] = Tcj [2]
26: if Solved the model by SAT solver then
27: return a masking scheme;
28: else
29: return NULL

350 Extending Randomness-Free First-Order Masking Schemes

solver returns a masking scheme that fulfills the specified model. Conversely, if no solution
is found, it indicates that no valid masking scheme satisfying the model can be derived.

An Illustrative Example of AND3 Gate Based on the Proposed Model.
Using the above model, we successfully find a masking scheme for the 3-input AND gate
x = f(a, b, c) = abc that requires only m = 6 component functions in Eq. (15). It can be
seen that the expansion layer contains only 6 component functions, representing a reduction
of 2 component functions compared to the common scheme with a linear compression
layer. Besides, the algebraic degree of both the expansion and compression layers is 2. In
other words, the flexible compression layer reduces the size and decreases the number of
operations of the expansion layer, making it more compact. Table 4 illustrates that we
achieve a 16% (resp., 34%) reduction in area and dynamic power compared to a common
scheme with a linear compression layer.

f0(a0, b1, c0) = a0c0 + b1 → x′0

f1(a0, b0, c0) = a0c0 + a0 + b0 → x′1

f2(a0, b1, c1) = a0c1 + b1 + c1 → x′2 x′0x
′
1 + x′0x

′
2 + x′1x

′
2 = x0

.

f3(a1, b1, c0) = a1c0 + b1 → x′3 x′3x
′
4 + x′3x

′
5 + x′4x

′
5 = x1

f4(a1, b0, c0) = a1c0 + a1 + b0 → x′4

f5(a1, b1, c1) = a1c1 + b1 + c1 → x′5

(15)

The Search Complexity and Optimization Methods. While the non-linear
compression layer expands the design space, it also increases the complexity of the
exhaustive search. To demonstrate the practical applicability of our new technique, we
provide a discussion on the search complexity and optimization method. To provide
a quantitative impact, considering a 4-input Boolean function of algebraic degree 3 in
Algorithm 1, there are typically m+ 2 = 23 + 2 = 10 component functions. Given that
the search complexity for each component function is 24 and two exhaustive searches for
secret inputs and input shares, the overall search complexity of Algorithm 1 is at least 248.
Consequently, it is inefficient to implement Algorithm 1 based on an exhaustive search.

To address the unaffordable search complexity, we propose an optimized search method
that characterizes Algorithm 1 as the Boolean satisfiability problem (SAT) or satisfiability
modulo theories (SMT) and then solves it with SMT/SAT solvers such as STP [GD07] and
Cryptominisat [SNC09]. More specifically, taking the CVC formats of the SMT/SAT model
of Algorithm 1 as input, the STP solver automates several heuristic preprocessing steps to
translate the input into a CNF expression, and then invokes the SAT solver Cryptominisat
to address it. Subsequently, the Cryptominisat solver capitalizes on various algorithms
such as Gaussian elimination and DPLL [DP60] to optimize and solve the SAT problem.
The solver efficiently searches for the desired solution in the subspace by strategically
partitioning the search space. In other words, characterizing a problem that cannot be
exhaustively searched into an SMT/SAT problem and then solving it using the STP solver
is exactly the optimization method for solving this problem. For instance, considering
the first coordinate function of the SKINNY S-box [BJK+16] outlined in Eq. (23), the
exhaustive search complexity exceeds 248. Based on our optimization method (i.e., the
STP solver), a desired solution can be generated within twenty minutes, equivalent to a
search complexity of 240 on a 2.4 GHz CPU.

3.2 Joint Masking Schemes for Multiple Boolean Functions
Due to the increased computational complexity of multiple Boolean functions, this section
focuses on joint masking schemes based on the linear compression layer. In this respect, we
first introduce a new technique named the share assignment strategy to extend the design

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 351

space of masking schemes in Sect. 3.2.1. Further, Section 3.2.2 provides construction guide-
lines for a joint masking scheme utilizing the share assignment strategy, and demonstrates
advantages of this joint technique, especially the area and dynamic power consumption.

3.2.1 Share Assignment Strategy

The share assignment strategy is a method to derive all possible share assignment types
for a given Boolean function. The share assignment type is the case that shares of some
variables are assigned to several component functions. For 2-share first-order masking
schemes, Eq. (16) is one of the share assignment types that assigns shares of 4 variables
to 8 component functions. To simplify the description, the subscripts for shares of each
component function are written in hexadecimal notation; for Eq. (16), it is 02468BCF.

f0(a0, b0, c0, d0), f1(a0, b0, c1, d0), f2(a0, b1, c0, d0), f3(a0, b1, c1, d0),
f4(a1, b0, c0, d0), f5(a1, b0, c1, d1), f6(a1, b1, c0, d0), f7(a1, b1, c1, d1).

(16)

Table 3: 16 share assignment types for a component function fi(.).

No. Share Assignment Type Indicator
1 fi(a0, b0, c0, d0) 0
2 fi(a0, b0, c0, d1) 1
3 fi(a0, b0, c1, d0) 2
4 fi(a0, b0, c1, d1) 3
5 fi(a0, b1, c0, d0) 4
6 fi(a0, b1, c0, d1) 5
7 fi(a0, b1, c1, d0) 6
8 fi(a0, b1, c1, d1) 7
9 fi(a1, b0, c0, d0) 8
10 fi(a1, b0, c0, d1) 9
11 fi(a1, b0, c1, d0) A
12 fi(a1, b0, c1, d1) B
13 fi(a1, b1, c0, d0) C
14 fi(a1, b1, c0, d1) D
15 fi(a1, b1, c1, d0) E
16 fi(a1, b1, c1, d1) F

We take the Boolean function f(a, b, c, d) = c + bd + abc as an example to describe
the detailed share assignment strategy. Because f(.) is a 4-input Boolean function with
algebraic degree 3, we should derive share assignment types where shares of 4 variables
(a, b, c, d) are assigned to at least 8 component functions. We denote these 8 component
functions as fi(.), 0 ≤ i ≤ 7. For each component function fi(.), there are 16 different
share assignment types as listed in Table 3. Each type corresponds to a certain indicator.

To guarantee that component functions fulfill the non-completeness and correctness
of the masking schemes, some shares or share combinations should appear in the share
assignment types. For the linear term c of the Boolean function, the shares c0 and c1
should be assigned to different component functions. For the quadratic term bd, share
combinations b0d0, b0d1, b1d0 and b1d1 should fit different component functions. Similarly,
for the cubic term abc, share combinations a0b0c0, a0b0c1, a0b1c0, a0b1c1, a1b0c0, a1b0c1,
a1b1c0 and a1b1c1 should appear in different component functions respectively. Based on
the above shares and share combinations, without considering the order of share assignment
types in different component functions, we wrote a program and obtained 196 classes of

352 Extending Randomness-Free First-Order Masking Schemes

share assignment types, one of which is listed in Eq. (16).
When considering the order of share assignment types from f0(.) to f7(.), there are

8! = 40 320 share assignment types for each class. These results are a huge number of
combinations. We propose two observations and a conclusion to reduce this number.

Observation 1. Assuming that there are m component functions noted as fi(.), 0 ≤ i < m,
f0(.) to fm

2 −1(.) are contributing to one output share of the target Boolean function and
fm

2
(.) to fm−1(.) correspond to the other output share. According to the definitions of

identical joint probability distribution and balance, the order of share assignment types from
f0(.) to fm

2 −1(.) has no effect on these two properties, and similarly for fm
2

(.) to fm−1(.).

For example, share assignment types 02468BCF and 20468BCF (i.e., Eqs. (16) and (17))
are equivalent.

f0(a0, b0, c1, d0), f1(a0, b0, c0, d0), f2(a0, b1, c0, d0), f3(a0, b1, c1, d0),
f4(a1, b0, c0, d0), f5(a1, b0, c1, d1), f6(a1, b1, c0, d0), f7(a1, b1, c1, d1).

(17)

Observation 2. According to the definitions of correctness and uniformity, exchanging
the order of the share assignment types of (f0(.), · · · , fm

2 −1(.)) and of (fm
2

(.), · · · , fm−1(.))
has no effect on these two properties.

For example, share assignment types 02468BCF and 8BCF0246 (i.e., Eqs. (16) and (18))
are equivalent.

f0(a1, b0, c0, d0), f1(a1, b0, c1, d1), f2(a1, b1, c0, d0), f3(a1, b1, c1, d1),
f4(a0, b0, c0, d0), f5(a0, b0, c1, d0), f6(a0, b1, c0, d0), f7(a0, b1, c1, d0).

(18)

Conclusion 1. Based on the above two observations, the number of share assignment
types for one class is equal to

δ =

(
m
m
2

)
2 , (19)

where m is the number of component functions,
(

m
m
2

)
is the binomial coefficient.

For the Boolean function f(a, b, c, d) = c+bd+abc,m = 8, the number of concrete share

assignment types for one class is equal to δ =
(m

m
2

)
2 = 35. In total, there are 196×35 = 6860

share assignment types. Compared to 196 × 40 320 = 7 902 720, 6860 share assignment
types are acceptable.

By integrating the characteristics of the target Boolean function with some observations,
we obtain a comprehensive and efficient share assignment strategy that plays a critical
role in the construction of masking schemes.

3.2.2 Joint Masking Schemes

Since each secret variable has 2 shares, there are at least 2t component functions in
the expansion layer of a common masking scheme, where t is the algebraic degree of
the Boolean function. It seems that there is limited scope for optimizing the number
of component functions from the perspective of a single Boolean function. Considering
the case of an n-bit S-box, there are typical

∑n−1
i=0 2ti component functions, where ti is

the algebraic degree of the i-th coordinate function of the S-box. Since these coordinate
functions depend on the same primary inputs, we noted that the masking scheme for each
coordinate function may not be entirely independent. Inspired by this idea, we propose an

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 353

optimization technique called joint masking schemes for multiple Boolean functions. We
first present a model to construct a joint masking scheme and then give an example to
illustrate the advantages of this technique.

The Model for a Joint Masking Scheme. Initially, we focus on constructing a
masking scheme for a single Boolean function utilizing the share assignment strategy as
proposed in Sect. 3.2.1. The construction guidelines are given in Algorithm 2. Subsequently,
we provide an example of Algorithm 3, which presents a model for constructing a joint
masking scheme specifically designed for two Boolean functions.

Based on the share assignment strategy in Sect. 3.2.1, Algorithm 2 presents a model
for constructing a masking scheme using a linear compression layer. This model takes an
n-bit Boolean function as input and generates a masking scheme as output, or indicates
if no solution exists. In the first line of Algorithm 2, the algebraic degree t of a given
function is determined. Utilizing the share assignment strategy, line 2 generates all possible
share assignment types (denoted as sat). Since the compression function is linear, the
expansion layer consists of at least 2t component functions. As depicted in lines 3 to 4,
each component function fi is represented in the form of an ANF, e.g., Eq. (10). The input
of each component function âi, b̂i, · · · is determined by the corresponding share assignment
type sat. For compression functions, line 5 constructs two linear Boolean functions fc0
and fc1 using (f0, f1, · · · f2t−1−1) and (f2t−1 , f2t−1+1, · · · f2t−1) as inputs, respectively. To
ensure correctness, identical joint distribution, balance, and uniformity, their constraints
follow similar operations as described in Algorithm 1, specifically in lines 8 to 25. In
lines 7 to 10, the SAT solver is invoked to search for a masking scheme that satisfies
the aforementioned model. If a solution is found, the solver returns a masking scheme;
otherwise, it indicates that no solution exists.

Algorithm 2 The model: whether a masking scheme for an n-bit Boolean functions with
2t component functions and 2 linear compression functions can be found
Input: An n-bit Boolean function f .
Output: Return a masking scheme or NULL.
1: Determine the algebraic degree of the target function, t.
2: Derive all possible share assignment types sat in Sect. 3.2.1.
3: for i = 0 to 2t − 1 do
4: fi = li·2n + li·2n+1 · âi + li·2n+2 · b̂i + li·2n+3 · ĉi + · · ·
5: Model two linear compression functions: fc0 =

∑2t−1−1
i=0 fi, fc1 =

∑2t−1
i=2t−1 fi.

6: Referring to lines 8 to 25 of Algorithm 1, constrain the masking properties of target
functions f .

7: if Solved the model by SAT solver then
8: return a masking scheme;
9: else
10: return NULL

Subsequently, we propose a model to design a joint masking scheme for two Boolean
functions. As shown in Algorithm 3, the input of our model consists of two n-bit Boolean
functions, denoted as f and g, along with a parameter s that specifies the desired number
of shared component functions. The output is either a joint masking scheme or NULL.
Algorithm 3 serves as a generic model for constructing a masking scheme for two Boolean
functions. When the value of s is set to zero, the algorithm focuses on generating a common
masking scheme without any shared component functions. Considering the optimization
technique, we can easily incorporate the idea of shared component functions by specifying
a value of s greater than zero.

The initial step in Algorithm 3 determines the algebraic degrees tf and tg of two
target functions. Leveraging the model presented in Algorithm 2, the subsequent line

354 Extending Randomness-Free First-Order Masking Schemes

constructs the masking models for Boolean functions f and g individually. Based on the
idea of shared component functions, lines 3 to 5 impose constraints to ensure an equal
contribution of shared component functions to both output shares. This means that there
are s

2 shared component functions contributing to one output share, represented as fi = gi

and f2tf −1+i = g2tg−1+i, where 0 ≤ i ≤ s
2 −1. As a joint masking scheme, Line 6 constrains

the joint distribution of output shares (fc0, fc1, gc0, gc1) is jointly uniform, as demonstrated
in lines 22 to 25 of Algorithm 1. In lines 7 to 10, the SAT solver is employed to analyze
the model and provide either a joint masking scheme or indicate the absence of a solution.

Algorithm 3 The model: whether a joint masking scheme for two n-bit Boolean functions
with 2tf + 2tg − s component functions and 4 linear compression functions can be found
Input: Two n-bit Boolean functions f , g.

s: the number of shared component functions.
Output: Return a joint masking scheme or NULL.
1: Determine the algebraic degree of target functions, tf , tg.
2: Referring to lines 1 to 6 of Algorithm 2, construct the masking models of Boolean

functions f and g, respectively.
3: for i = 0 to s

2 − 1 do . Shared component functions
4: fi = gi

5: f2tf −1+i = g2tg−1+i

6: Constrain (fc0, fc1, gc0, gc1) is jointly uniform. . Joint uniformity
7: if Solved the model by SAT solver then
8: return a joint masking scheme;
9: else
10: return NULL

An Illustrative Example of the Joint Masking Scheme. This optimization
called the joint masking scheme is based on the idea of sharing certain component functions
in the expansion layer among masking schemes of several Boolean functions. Equation (20)
exemplifies the optimization of two masked Boolean functions, where x = f(a, b, c, d) =
ab + c and y = g(a, b, c, d) = bc + d. In addition to individual masking properties (e.g.,
non-completeness, identical joint probability distribution, and correctness), these schemes
also exhibit joint uniformity in their outputs, denoted as (x0, x1, y0, y1).

f0(a0, b1, c0, d0) = a0b0 + b0c0 → x′0

f1(a1, b0, c0, d1) = a1b0 + b0c0 + c0 → x′1 x′0 + x′1 = x0

f2(a0, b0, c1, d0) = a0b0 + b0c1 + a0 → x′2 x′0 + x′2 = y0
.

f3(a0, b1, c1, d0) = a0b1 + b1c1 + d0 → x′3 x′3 + x′4 = x1

f4(a1, b1, c1, d0) = a1b1 + b1c1 + c1 + d0 → x′4 x′3 + x′5 = y1

f5(a0, b1, c0, d1) = a0b1 + b1c0 + a0 + d1 → x′5

(20)

It is clear that the joint expansion layer in this context utilizes only six component
functions, resulting in a reduction of two registers compared to individual masking schemes
for the above two Boolean functions. Experimental results in Table 4 indicate that we
achieve a 25% (resp., 27%) reduction in area and dynamic power consumption.

3.3 Application: Designing New Masking-Friendly S-boxes
As the only non-linear component in the block cipher, the S-box not only plays a crucial
role in the security of the cipher but also affects the hardware performance. Therefore

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 355

the S-box should be both secure and hardware-friendly. Due to the large energy and area
cost to create randomness [BDPVA10, KM23], designing an S-box with a randomness-free
masking scheme makes a lot of sense.

Fig. 3 shows the diagram for the construction of new masking-friendly S-boxes. The
construction workflow mainly consists of three parts, i.e., generating S-boxes based
on [LMC+22], constructing masking schemes using our techniques, and filtering S-boxes
with excellent masking hardware performance.

Generate

S-boxes

Masking Schemes

for 𝑓0(.)

Masking Schemes

for S-boxes

Filter Hardware-

friendly S-boxes

Cryptographic

Properties
Design

Compiler

Masking Schemes

for 𝑓1(.)

… …

Masking Schemes

for 𝑓2(.)

Part 1 Part 2 Part 3

Figure 3: The construction of new S-boxes with friendly masking schemes.

In [LMC+22], Lu et al. proposed an STP-based model to search for S-boxes with specific
cryptographic properties, such as differential uniformity [Nyb94], linearity [Nyb95], the
frequency of differential uniformity (linearity) and so on. Based on the work of [LMC+22],
we apply the STP-based model to construct S-boxes that exhibit the required cryptographic
properties (shown in the first ellipse named "Generate S-boxes" in Fig. 32). Next, we
construct in part 2 masking schemes using our new techniques. Utilizing the techniques
described in Sects. 3.1 and 3.2, we construct (optimized) masking schemes for each
coordinate function (i.e., f i(.), i = 0, 1, · · ·) of the S-box. Note that due to the inherent
uncertainty, every coordinate function does not always have an optimized masking scheme.
If a joint uniform combination of each masked coordinate function can be found, we
select this S-box and its masking scheme (shown in the ellipse named "Masking Schemes
for S-boxes" in Fig. 3). In part 3, we use the EDA tool Synopsis Design Compiler to
evaluate the hardware performance of masking schemes for multiple S-boxes generated in
the previous parts, and filter solutions with excellent hardware performance.

4 Case Studies
This section provides some case studies where we have applied our techniques to real-
ize first-order secure implementations of some S-boxes (e.g., PRINCE S-box [BCG+12],
PRINCE S-box inverse [BCG+12], SKINNY S-box [BJK+16], Mysterion S-box [JSV17],
GIFT S-box [BPP+17], PRESENT S-box [BKL+07], Midori S-box [BBI+15] and AES
S-box [DR99]) and construct some new masking-friendly S-boxes.

4.1 PRINCE S-box Inverse
To the best of our knowledge, [SM21a] is the first work to propose 2-share first-order
masking schemes without randomness. In [SM21a], the authors provided masking schemes

2The part 1 in Fig. 3 can continuously generate S-boxes with the required cryptographic properties.

356 Extending Randomness-Free First-Order Masking Schemes

without randomness for many S-boxes, but failed to find a scheme for the PRINCE S-box
inverse B732FD89A6405EC1. Based on the coordinate functions in Eq. (21), the authors
only found partial uniform combinations, i.e., joint uniformity among the first, third, and
fourth masked coordinate functions, but not the second masked coordinate function. By
the non-linear compression layer in Sect. 3.1.1, we solve this challenge as follows:

f0(a, b, c, d) = 1 + d+ ab+ bc+ cd+ abd+ acd,

f1(a, b, c, d) = 1 + ac+ bc+ bd+ cd+ abc,

f2(a, b, c, d) = a+ c+ ab+ ac+ bc+ bd+ abc+ and,

f3(a, b, c, d) = 1 + a+ b+ ab+ ac+ bc+ cd+ abc+ acd+ bcd.

(21)

To the best of our knowledge, this is the first 2-share first-order secure masking scheme
without randomness for the PRINCE S-box inverse. Since the non-linear compression layer
leads to a higher computational cost, we try to address this challenge using the STP solver.
Following the technique proposed in Sect. 3.1.2, we characterize constraints of masking
schemes, including non-completeness, identical joint probability distribution, correctness,
and joint uniformity. Running on a 48-core AMD EPYC 7302@2.4GHz CPU, the STP
solver took 36 hours to successfully generate a masking scheme for the PRINCE S-box
inverse. Since it is an automated search of the STP solver, the search time is not fixed.
If there are more available solutions in the whole search space, the search time will be
shorter. Excluding this solution and starting the STP solver again, more solutions can be
generated. Table 4 clearly demonstrates that our work not only provides a formally secure
implementation, but also offers better hardware performance (e.g., area, dynamic power
and delay), compared to the related work [SM21a].

4.2 PRINCE S-box
Another case study is the PRINCE S-box BF32AC916780E5D4, which is also an unresolved
challenge in [SM21a]. By using the share assignment strategy proposed in Sect. 3.2.1, we
construct the corresponding masking schemes based on a linear compression layer. In other
words, we present the first 2-share randomness-free first-order secure masking schemes for
the PRINCE S-box. The scheme is described next.

f0(a, b, c, d) = 1 + c+ d+ ab+ bc+ ad+ cd+ abc,

f1(a, b, c, d) = 1 + ac+ bc+ bd+ abc+ bcd,

f2(a, b, c, d) = a+ d+ ab+ ad+ bd+ abd+ bcd,

f3(a, b, c, d) = 1 + b+ d+ bc+ cd+ abc+ abd+ acd.

(22)

Since the PRINCE S-box consists of four cubic Boolean functions (shown in Eq. (22)),
it is easy to determine n = 4, t = 3 in Algorithm 2. Applying the share assignment strategy
proposed in Sect. 3.2.1 to the above four coordinate functions in Eq. (22), we found 5670,
560, 560 and 140 possible share assignment types, respectively. According to lines 3 to 5 of
Algorithm 2, each function is encoded in the form of an Algebraic Normal Form (ANF). For
each share assignment type, we search for specific expressions for the component functions
such that all properties of masking schemes are satisfied in line 6 of Algorithm 2. Running
on a 48-core AMD EPYC 7302@2.4GHz CPU, we filter out 11200, 4896, 4896 and 1536
solutions within two hours. Finally, we have found thousands of combinations that satisfy
the joint uniformity. While Table 4 shows that the hardware overhead is slightly larger
than that of [SM21a], the latter did not pass formal verification due to uniformity issues.

Based on our constructions for the PRINCE S-box and its inverse, we present a 2-
share randomness-free round-based design of PRINCE encryption/decryption function, as
depicted in Fig. 4. Due to the different assignment types for the above two S-boxes, they

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 357

are implemented individually, with a multiplexer utilized to select the appropriate one.
For example, for the masked second coordinate function of the PRINCE S-box, the share
assignment type of the first component function is represented as (a0, b0, c0, d1), while the
corresponding inverse of the PRINCE S-box is (a0, b1, c1, d0), which will leak the secret
variables b, c, and d when the design of [SM21a] is applied, i.e., the component functions of
the S-boxes above share a set of registers. Although this design requires a larger hardware
area compared to [SM21a], it eliminates the need for randomness and achieves uniformity
of the PRINCE cipher.

Figure 4: 2-share randomness-free masked round-based PRINCE Enc/Dec function.

4.3 Some Optimized S-boxes
It is well known that masking schemes can be very demanding in terms of hardware
resources, especially in terms of area. In this section, we demonstrate the advantages of
our techniques of Sects. 3.1.2 and 3.2.2 in generating optimized masking schemes of the
S-boxes of SKINNY [BJK+16], Mysterion [JSV17], GIFT [BPP+17], PRESENT [BKL+07],
Midori [BBI+15] and AES [DR99]. Since the processing steps are similar for each S-box,
we present the details of the optimization techniques for the SKINNY S-box as an example.

f0(a, b, c, d) = b+ c+ d+ ab+ ac+ ad+ bd+ abc+ bcd,

f1(a, b, c, d) = a+ d+ ab+ bc+ bd+ cd+ bcd,

f2(a, b, c, d) = 1 + b+ c+ d+ bc,

f3(a, b, c, d) = 1 + a+ c+ d+ cd.

(23)

It is easy to generate the coordinate functions in Eq. (23) from the look-up table of
SKINNY S-box: C6901A2B385D4E7F. Since the cubic terms of f0(.) and f1(.) are different
(one is abc, bcd and the other is bcd), we choose the optimization technique based on the
non-linear compression layer in Sect. 3.1.2. Utilizing the technique in Sect. 3.2.2, we are
capable of optimizing the remaining two coordinate functions f2(.) and f3(.). Based on the
above CPU, it is not difficult to find desired masked component functions within four hours.
Although no jointly uniform solution is found in our experiments, we find partial uniform
masking schemes, i.e., the second, third, and fourth masked coordinate functions. To
satisfy the uniformity property, we construct a large number of masking schemes without
optimization for the first coordinate function (i.e., a non-linear compression layer and a
linear compression layer both without optimization). Based on the above masking schemes,
thousands of jointly uniform combinations can be successfully found. In other words, our
optimization techniques are acting on the second, third, and fourth coordinate functions
for the SKINNY S-box. Referring to the study of SKINNY’s specification, Fig. 5 gives the
schematic of the 2-share round-based SKINNY-64 encryption function without randomness.
There are two register stages per cipher round. Since each output bit of the MixColumns
(MC) operation is obtained by performing the XOR of at most three bits that belong to
three different S-boxes, it is unnecessary to place a register following the compression layer.

In addition to the SKINNY S-box, the reduction in the number of registers yields a
substantial improvement in hardware performance, as illustrated in Table 4. In particular,

358 Extending Randomness-Free First-Order Masking Schemes

we achieve noteworthy reductions in both area and dynamic power for different S-boxes. For
the SKINNY S-box, Mysterion S-box, GIFT S-box, PRESENT S-box and Midori S-box, the
area saving amount to 21%, 24%, 15%, 14% and 3%, while the dynamic power consumption
is reduced by 15%, 27%, 18%, 15% and 12% for the five above S-boxes, respectively. It
is worth noting that in the case of the AES S-box, we share the randomness-free design
from [SM21a], which is a tower-field approach for the inversion in GF (28). While our
techniques lead to an improvement in area (9%) and dynamic power consumption (17%)
for the GF (24) inversion (as a 4-bit S-box), it should be acknowledged that we reach the
same level as [SM21a], i.e., the GF (24)2 inversion is probing secure but not jointly uniform.
Consequently, the 2-share randomness-free first-order secure masking schemes for the AES
S-box remain an unsolved challenge.

Figure 5: 2-share randomness-free masked round-based SKINNY encryption function.

Table 4: Summary of different 2 shares randomness-free first-order implementationsa.

Target Formal
Verificationb

Technique
Type

Area
[GE]

Power
[uW]

Delay
[ns] Reference

AND2 3 LCc 32 2.04 0.14 [SM21a]
3 NCd 31 2.01 0.13 This Work

AND3 3 LC 72 4.92 0.19 [SM21a]
3 NC 60 3.24 0.19 This Work

Two Boolean
Functions

3 LC 83 4.79 0.14 [SM21a]
3 JMe 63 3.50 0.14 This Work

PRINCE S-box 7 LC 329 22.36 0.26 [SM21a]
3 JM 351 22.92 0.31 This Work

PRINCE S-box
Inverse

7 LC 356 21.86 0.29 [SM21a]
3 NC 341 20.69 0.24 This Work

Mysterion S-box 3 LC 243 14.74 0.22 [SM21a]
3 NC+JM 186 10.82 0.19 This Work

SKINNY S-box 3 LC 252 14.89 0.24 [SM21a]
3 NC+JM 200 12.59 0.23 This Work

GIFT S-box 3 LC 245 15.36 0.20 [SM21a]
3 NC+JM 208 12.53 0.20 This Work

PRESENT S-box 3 LC 313 21.31 0.29 [SM21a]
3 JM 269 18.09 0.29 This Work

Midori S-box 3 LC 293 18.18 0.26 [SM21a]
3 NC 283 15.96 0.26 This Work

GF (24) Inversion 3 LC 337 22.53 0.28 [SM21a]
3 NC 306 18.72 0.27 This Work

a Using Synopsis Design Compiler with NanGate 45 nm.
b Verification of the claimed security by SILVER [KSM20].
c Linear compression techniques in [SM21a].
d Non-linear compression techniques in Sect. 3.1.
e Joint masking techniques in Sect. 3.2.

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 359

4.4 New S-boxes
To design masking-friendly S-boxes, we do not only consider security metrics (e.g., differen-
tial uniformity [Nyb94], linearity [Nyb95], and so on) but also cover hardware performance
of the first-order masking schemes without randomness.

As an illustration, we generate a set of new S-boxes by following the workflow depicted
in Fig. 3. These S-boxes possess equivalent cryptographic properties to that of the PRINCE
S-box and its inverse. Based on [LMC+22], we successfully generated 60 candidate S-boxes
within approximately 6 hours. Due to the inherent uncertainty involved in generating
masking schemes for both the S-box and its corresponding inverse, we were successful for
thirteen of these S-boxes.

Table 5 lists the look-up table descriptions of five of these S-boxes, while Table 6
lists the hardware performance of their corresponding masking schemes. Considering the
hardware performance of the PRINCE S-box, S1, S2 and S3 are better candidates among
these S-boxes. In terms of their inverses, only S1 is more favorable than the PRINCE
S-box inverse. Based on the above considerations, S1 is a better candidate.

Table 5: The look-up table descriptions of new S-boxes.

S-box Look-up Table
S1 3158C2D9A4F0E6B7
S2 B48375016CE29DAF
S3 19CD574B0826FAE3
S4 4E516870BA2C39FD
S5 B437D6208591FCAE

Table 6: Summary of 2 shares randomness-free 1st-order implementations for new S-boxes.

S-box Performance for S-box Performance for S-box Inverse
Area
[GE]

Power
[uW]

Delay
[ns]

Area
[GE]

Power
[uW]

Delay
[ns]

PRINCE 351 22.92 0.31 341 20.69 0.24
S1 338 21.33 0.27 332 21.67 0.22
S2 340 22.19 0.28 346 22.51 0.28
S3 349 22.56 0.34 370 24.04 0.39
S4 350 22.07 0.30 359 24.13 0.30
S5 351 22.16 0.37 343 21.63 0.27

5 Security Analysis
This section presents a comprehensive security analysis of our techniques, providing detailed
insights into its theoretical evaluation encompassing the security assessment of individual
S-boxes, full ciphers of PRINCE and SKINNY, and their automated analysis utilizing
SILVER [KSM20] and PROLEAD [MM22]. Additionally, experimental evaluation is con-
ducted through FPGA-based experiments, which encompass the complete implementations
of the PRINCE and SKINNY ciphers.

5.1 Theoretical Evaluation
The theoretical security is established through three parts: the security of the S-boxes,
the security of full ciphers, and their automated analysis. The security of the S-boxes is
established through their construction principles. As described in Sect. 2.3, the construction

360 Extending Randomness-Free First-Order Masking Schemes

of a masking scheme can be understood as the problem of component functions that
satisfy certain masking properties, including non-completeness, identical joint probability
distribution, correctness, and joint uniformity. Once these masking properties specifically
designed to align with the hardware platform are successfully fulfilled, the masking scheme
is theoretically consistent with the glitch-extended probing model. The aforementioned
discussion presents a theoretical analysis of the S-boxes. The linear components can be
trivially implemented to guarantee first-order security. Based on the first-order secure
S-boxes and linear components, it is not difficult to construct full ciphers without degrading
the security.

To substantiate the aforementioned assertion, we leverage the PRINCE and SKINNY
ciphers as examples. Through Propositions 1 and 2, we prove the first-order security of
full ciphers under the glitch-extended probing model.

Proposition 1. Assuming that the masked non-linear components (i.e., S-box and S-box
inverse) satisfy the first-order glitch-extended probing security and uniformity, the masked
PRINCE cipher in Fig. 4 is first-order secure under the glitch-extended probing model.

Proof.

i. Probe the register in the S-box. When a glitch-extended probe is placed on a
register between S and Compress S of Fig. 4, this case can be extended as some
variables stored in the round state registers that contribute to the value of the probed
register. Moreover, the variables stored in the round state registers (i.e., the primary
inputs or the outputs of the round function) are uniform. Since this S-box satisfies
non-completeness, this probe will not detect the full shares of a secret variable.

ii. Probe the register in the S-box inverse. When a glitch-extended probe is placed
on a register between S−1 and Compress S−1 of Fig. 4, this case can be represented
as some variables in the round state registers that lead to the value of the probed
register. Similarly to the above case, this probe does not detect two shares of any
secret variable due to the S-box inverse’s uniformity and non-completeness.

iii. Probe the round state register. The glitch-extended probe on the round state
register can observe two signals, one as the output share of the round function and
the other as the XOR result involving primary inputs and subkey. Since each bit of
round function outputs is generated by some operations on multiple distinct bits of
the above XOR result (e.g., SR, S-box and M ′ and so on), the effect of the above two
signals on masking security can be analyzed respectively. Since each output bit of the
M ′-layer corresponds to an XOR operation involving three bits from distinct S-boxes,
it maintains the desired masking security even without the placement of a register layer
at the S-box outputs. In other words, one bit of the round function output extends
to three output bits from distinct S-boxes. Since each S-box satisfies the first-order
security, this signal of round function output does not reveal the secret variable, and
the whole round function output is uniform. For the XOR results involving primary
inputs and subkey, where one signal of them represents a share of a secret variable, it
does not affect the desired security.

Proposition 2. Assuming that the only masked non-linear component (i.e., S-box) is
first-order glitch-extended probing secure and uniform, the masked SKINNY cipher in
Fig. 5 is first-order secure under the glitch-extended probing model.

Proof.

i. Probe the register in the S-box. When a glitch-extended probe is placed on the
register between S and Compress of Fig. 5, it can be extended as some S-box inputs
stored in the round state registers. Due to the non-completeness of the masked S-box,
these inputs do not reveal the full shares of a secret variable.

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 361

ii. Probe the round state register. When a glitch-extended probe is placed on the
round state register, two signals can be observed: the output signals of the round
function and the primary input. Given that every bit of the round function outputs is a
result of some operations performed on several bits of primary inputs (e.g., SR, S-box,
MC, and so on), the impact of these two signals on masking security can be analyzed,
respectively. Since each output bit of MC operation is generated by performing the
XOR of at most three bits from distinct S-boxes, placing a register layer at the S-box
outputs is unnecessary. In other words, one bit of the round function output extends to
at most three output bits from distinct S-boxes. Since each S-box exhibits first-order
security and uniformity, this specific signal of the round function output does not
leak any secret variables, and the entire round function outputs remain uniform. In
the context of primary inputs, where a specific signal represents a share of a secret
variable, it does not compromise the masking security.

In addition to the above formal security, we also utilized the automated tools SIL-
VER [KSM20] and PROLEAD [MM22] to verify the designs discussed in this paper. By
means of SILVER [KSM20] we confirm the first-order security and uniformity of all S-box
in this paper, including the PRINCE S-box, the PRINCE S-box inverse, and the SKINNY
S-box. With respect to the full ciphers, we conduct PROLEAD-based assessments [MM22]
(10 million simulations) to demonstrate the desired security of the PRINCE and SKINNY
ciphers.

5.2 Experimental Evaluation
We conduct an FPGA-based experiment to verify the practical security. Our design is
implemented on a SAKURA-G board [SAK] with a stable clock frequency of 3 MHz.
During the runtime, the power traces are monitored with a PicoScope 5244D oscilloscope
at a sampling frequency of 250 MS/s. Regarding the evaluation technique, we apply the
non-specific fixed-vs-random t-test described in [SM15]. Further, we employ the confidence
interval-based framework [BPG18] to identify quantifiable lower and upper bounds for
the leakage. Figures 6 and 7 demonstrate the analysis results using 10 million traces at a
confidence level α = 0.01 adjusted for family-wise error rate.

0 250 500 750 1000 1250 1500 1750

sample points

4

2

0

2

4

t-s
ta

tis
tic

s

(a) PRNG ON, 1st-order t-test.

0 250 500 750 1000 1250 1500 1750

sample points

300

200

100

0

100

200

300

t-s
ta

tis
tic

s

(b) PRNG OFF, 1st-order t-test.

0 250 500 750 1000 1250 1500 1750

sample points
0

5

10

15

m
ag

ni
tu

de
[n

V]

(c) PRNG ON, 1st-order confidence interval.

0 250 500 750 1000 1250 1500 1750

sample points
0.0

0.5

1.0

1.5

2.0

m
ag

ni
tu

de
[m

V]

(d) PRNG OFF, 1st-order confidence interval.

Figure 6: Experimental results of our PRINCE round-based design.

For the PRINCE design, we collected 10 million traces to conduct the t-test and
confidence interval methods. As shown in Fig. 6(a), no first-order leakage can be detected

362 Extending Randomness-Free First-Order Masking Schemes

in the PRINCE ciphers. Following the plots (i.e., lower bounds in red, upper bounds
in blue) in Fig. 6(c), the lower bound of zero for every sample point indicates that our
evaluation detected no first-order leakage. This upper bound indicates the maximum
possible leakage (with a confidence level of 0.99) at each point. To validate the experimental
setup, we collected 100 000 traces and repeated the above analysis when the initial masking
is turned off (i.e., the mask for the initial sharing of the plaintext and the key is set to 0).
As expected, Figs. 6(b) and 6(d) exhibit detectable first-order leakage.

0 750 1500 2250 3000 3750 4500 5250

sample points

4

2

0

2

4

t-s
ta

tis
tic

s

(a) PRNG ON, 1st-order t-test.

0 750 1500 2250 3000 3750 4500 5250

sample points

300

200

100

0

100

200

300

t-s
ta

tis
tic

s

(b) PRNG OFF, 1st-order t-test.

0 750 1500 2250 3000 3750 4500 5250

sample points
0

2

4

6

8

m
ag

ni
tu

de
[n

V]

(c) PRNG ON, 1st-order confidence interval.

0 750 1500 2250 3000 3750 4500 5250

sample points
0.0

0.1

0.2

0.3

0.4

0.5

0.6
m

ag
ni

tu
de

[m
V]

(d) PRNG OFF, 1st-order confidence interval.

Figure 7: Experimental results of our SKINNY-64 round-based design.

The evaluation results of SKINNY-64 using 10 million traces are shown in Fig. 7.
Figures. 7(a) and 7(b) present the results of the t-test analysis, which confirm the first-
order security of our design and the validity of our experimental setup. The plots of
confidence intervals depicted in Figs. 7(c) and 7(d) further reinforce the conclusion that
our design exhibits no detectable first-order leakage and our experimental setup is valid.

6 Conclusions
Since first-order masking schemes have lower hardware overhead than higher-order scenarios,
this paper focuses on first-order designs without randomness. In this paper, we propose two
approaches to extend the randomness-free first-order masking schemes: one approach uses
a non-linear compression layer and the other one uses a linear compression layer. The novel
non-linear compression layer substantially expands the design space of masking schemes due
to the increased flexibility of non-linear operations. For masking schemes based on a linear
compression layer, we propose a comprehensive share assignment strategy allowing the
construction of masking schemes for more S-boxes. Additionally, we propose optimizations
for both the non-linear and linear compression approaches to reduce the hardware overhead.
Compared to previous work, our work offers the following improvements. We can construct
masking schemes for a wider range of S-boxes, including the PRINCE S-box and its inverse,
while also achieving enhanced hardware performance for the S-boxes of SKINNY, Mysterion,
and so on. Moreover, our techniques can be used to construct new masking-friendly S-boxes.

Note that our techniques are not necessarily equipped with the following composable
properties: SNI [BBD+16] and PINI [CS20]. In addition to the work of [SM21a], Shah-
mirzadi et al. introduced a methodology to construct second-order masking schemes with
almost no fresh randomness [SM21b]. Expanding our techniques to higher-order masking
may bring more shared component functions and better hardware performance. Neverthe-
less, the computational complexity increases significantly. Consequently, proposing novel

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 363

methods to adapt our proposed techniques to higher-order masking schemes is challenging
and meaningful future work.

Acknowledgments
The authors would like to thank the reviewers for their valuable comments and sug-
gestions. This work is supported by the National Key R&D Program of China (Grant
No. 2023YFA1009500), the National Natural Science Foundation of China (Grant No.
62032014, U2336207), Department of Science & Technology of Shandong Province, China
(No. SYS202201), Quan Cheng Laboratory (Grant No. QCLZD202301, QCLZD202306).

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 116–129, 2016.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Advances in Cryptology–ASIACRYPT 2015:
21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29–December 3,
2015, Proceedings, Part II 21, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, et al. PRINCE–a low-latency block cipher for pervasive
computing applications. In Advances in Cryptology–ASIACRYPT 2012: 18th
International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings 18,
pages 208–225. Springer, 2012.

[BDPVA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-
based pseudo-random number generators. In Cryptographic Hardware and
Embedded Systems, CHES 2010: 12th International Workshop, Santa Barbara,
USA, August 17-20, 2010. Proceedings 12, pages 33–47. Springer, 2010.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Advances in Cryptology–CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II 36, pages 123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
Present: An ultra-lightweight block cipher. In Cryptographic Hardware and
Embedded Systems-CHES 2007: 9th International Workshop, Vienna, Austria,
September 10-13, 2007. Proceedings 9, pages 450–466. Springer, 2007.

[BPG18] Florian Bache, Christina Plump, and Tim Güneysu. Confident leakage assess-
ment—a side-channel evaluation framework based on confidence intervals. In

364 Extending Randomness-Free First-Order Masking Schemes

2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1117–1122. IEEE, 2018.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present: Towards reaching
the limit of lightweight encryption. In Cryptographic Hardware and Embed-
ded Systems–CHES 2017: 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pages 321–345. Springer, 2017.

[CGF21] Ana Covic, Fatemeh Ganji, and Domenic Forte. Circuit masking: from theory
to standardization, a comprehensive survey for hardware security researchers
and practitioners. arXiv preprint arXiv:2106.12714, 2021.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM (JACM), 7(3):201–215, 1960.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[FGP+18] Sebastian Faust, Vincent Grosso, SM Del Pozo, Clara Paglialonga, and F-X
Standaert. Composable masking schemes in the presence of physical defaults
& the robust probing model. 2018.

[GD07] Vijay Ganesh and David L Dill. A decision procedure for bit-vectors and arrays.
In Computer Aided Verification: 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007. Proceedings 19, pages 519–531. Springer,
2007.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Mask-
ing: Compact Masked Hardware Implementations with Arbitrary Protection
Order. In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceed-
ings of the ACM Workshop on Theory of Implementation Security, TIS@CCS
2016 Vienna, Austria, October, 2016, page 3. ACM, 2016.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology-CRYPTO 2003:
23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003. Proceedings 23, pages 463–481. Springer, 2003.

[JSV17] Anthony Journault, François-Xavier Standaert, and Kerem Varici. Improving
the security and efficiency of block ciphers based on LS-designs. Designs,
Codes and Cryptography, 82:495–509, 2017.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings
19, pages 388–397. Springer, 1999.

[KM23] David Knichel and Amir Moradi. Composable Gadgets with Reused Fresh
Masks − First-Order Probing-Secure Hardware Circuits with only 6 Fresh
Masks. Cryptology ePrint Archive, 2023.

Lixuan Wu, Yanhong Fan, Weijia Wang, Bart Preneel and Meiqin Wang(�) 365

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology—CRYPTO’96: 16th
Annual International Cryptology Conference Santa Barbara, California, USA
August 18–22, 1996 Proceedings 16, pages 104–113. Springer, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER–statistical inde-
pendence and leakage verification. In Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of Cryp-
tology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part I 26, pages 787–816. Springer, 2020.

[LMC+22] Zhenyu Lu, Sihem Mesnager, Tingting Cui, Yanhong Fan, and Meiqin Wang.
An STP-based model toward designing S-boxes with good cryptographic
properties. Designs, Codes and Cryptography, 90(5):1179–1202, 2022.

[MM22] Nicolai Müller and Amir Moradi. Prolead: A probing-based hardware leakage
detection tool. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 311–348, 2022.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In International confer-
ence on information and communications security, pages 529–545. Springer,
2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. Journal of
Cryptology, 24:292–321, 2011.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor
Helleseth, editor, Advances in Cryptology — EUROCRYPT ’93, pages 55–64,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[Nyb95] Kaisa Nyberg. S-boxes and round functions with controllable linearity and
differential uniformity. In Bart Preneel, editor, Fast Software Encryption,
pages 111–130, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen.
A side-channel analysis resistant description of the AES S-box. In Fast
Software Encryption: 12th International Workshop, FSE 2005, Paris, France,
February 21-23, 2005, Revised Selected Papers 12, pages 413–423. Springer,
2005.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology–
CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I 35, pages 764–783. Springer,
2015.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology: A
clear roadmap for side-channel evaluations. In Cryptographic Hardware and
Embedded Systems–CHES 2015: 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings 17, pages 495–513. Springer, 2015.

366 Extending Randomness-Free First-Order Masking Schemes

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-Consolidating First-Order
Masking Schemes Nullifying Fresh Randomness. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):305–342, 2021.

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-Order SCA Security with
almost no Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):708–755, 2021.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending sat solvers
to cryptographic problems. In International Conference on Theory and
Applications of Satisfiability Testing, pages 244–257. Springer, 2009.

[Tri03] Elena Trichina. Combinational logic design for AES subbyte transformation
on masked data. IACR Cryptol. ePrint Arch., page 236, 2003.

	Introduction
	Contributions
	Outline

	Preliminaries
	Notations and Definitions
	Probing Security
	Masking with d + 1 Shares

	New Techniques
	Masking Schemes Based on a Non-linear Compression Layer
	Joint Masking Schemes for Multiple Boolean Functions
	Application: Designing New Masking-Friendly S-boxes

	Case Studies
	PRINCE S-box Inverse
	PRINCE S-box
	Some Optimized S-boxes
	New S-boxes

	Security Analysis
	Theoretical Evaluation
	Experimental Evaluation

	Conclusions

