
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2025, No. 1, pp. 420–449. DOI:10.46586/tches.v2025.i1.420-449

Dash: Accelerating Distributed Private
Convolutional Neural Network Inference with

Arithmetic Garbled Circuits
Jonas Sander1, Sebastian Berndt2, Ida Bruhns1 and Thomas Eisenbarth1

1 University of Luebeck, Luebeck, Germany,
{j.sander,ida.bruhns,thomas.eisenbarth}@uni-luebeck.de

2 Technische Hochschule Luebeck, Luebeck, Germany, sebastian.berndt@th-luebeck.de

Abstract. The adoption of machine learning solutions is rapidly increasing across all
parts of society. As the models grow larger, both training and inference of machine
learning models is increasingly outsourced, e.g. to cloud service providers. This
means that potentially sensitive data is processed on untrusted platforms, which bears
inherent data security and privacy risks. In this work, we investigate how to protect
distributed machine learning systems, focusing on deep convolutional neural networks.
The most common and best-performing mixed MPC approaches are based on HE,
secret sharing, and garbled circuits. They commonly suffer from large performance
overheads, big accuracy losses, and communication overheads that grow linearly in
the depth of the neural network. To improve on these problems, we present Dash,
a fast and distributed private convolutional neural network inference scheme secure
against malicious attackers. Building on arithmetic garbling gadgets [BMR16] and
fancy-garbling [BCM+19], Dash is based purely on arithmetic garbled circuits. We
introduce LabelTensors that allow us to leverage the massive parallelity of modern
GPUs. Combined with state-of-the-art garbling optimizations, Dash outperforms
previous garbling approaches up to a factor of about 100. Furthermore, we introduce
an efficient scaling operation over the residues of the Chinese remainder theorem
representation to arithmetic garbled circuits, which allows us to garble larger networks
and achieve much higher accuracy than previous approaches. Finally, Dash requires
only a single communication round per inference step, regardless of the depth of the
neural network, and a very small constant online communication volume.
Keywords: Garbled Circuit, Inference, GPU, TEE

1 Introduction
The recent progress of machine learning (ML) has resulted in broad adoption across almost
all industries and government institutions. Consequently, ML is also being applied to
security and privacy-sensitive domains like healthcare, law enforcement, finance, public
administration, logistics, and many more. As ML models usually become very large and
computation intensive, machine learning as a service (MLaaS) is a growing market in
which data owners send their data to an inference device (or server) which produces the
output. However, the owners (often called clients) of input and output may not want to or
are not allowed to share their data due to privacy concerns or due to regulations such as
the General Data Protection Regulation (GDPR) of the European Union. This can be
solved by providing private inference protocols.

Many different cryptographic approaches have been used to protect the data in dis-
tributed ML applications, including secure multiparty computation (MPC) [TB19], ho-
momorphic encryption (HE) [CBL+18], garbled circuit (GC) based techniques [RRK18],

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09

https://doi.org/10.46586/tches.v2025.i1.420-449
mailto:j.sander@uni-luebeck.de,ida.bruhns@uni-luebeck.de,thomas.eisenbarth@uni-luebeck.de
mailto: sebastian.berndt@th-luebeck.de
http://creativecommons.org/licenses/by/4.0/

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 421

or combinations of the former [MZ17, JVC18, LMSP21, CGOS22]. While HE and MPC
already provide quite efficient solutions for linear operations, the non-linear components of
artificial neural networks (ANNs) lead to very large overheads in these schemes. Newer ap-
proaches thus split up the operations of ANNs and compute the linear components via HE
or MPC and the non-linearities via GCs [CL01, BOP06, OPB07, BFL+11, MZ17, LJLA17,
RWT+18, MR18, MLS+20]. Unfortunately, switching the cryptographic techniques seems
to always require communication between the data owner(s) and the inference device or
between multiple inference devices which jointly perform the inference. This results in
a linear number of communication rounds in the number of transitions from linear to
non-linear layers (and vice versa) in the model architecture. Consequently, the computation
of a linear layer that follows a non-linear layer must always wait for the completion of
the required communication, slowing down the computation significantly. Even worse,
in many approaches, the communication volume massively grows with the depth of the
network [LJLA17, CBL+18], turning communication volume into a massive bottleneck
compared to the computational cost of the schemes. Excessive volumes of communication
can be avoided by staying within a single technique, as long as all layer types can be
computed efficiently within the chosen technique. Compared to other MPC techniques,
GCs require the least amount of online communication. Several works have proposed and
analyzed the usage of binary GCs for protecting machine learning [SS08, RRK18, RSC+19].
While keeping online communication rounds low, binary GCs are not well-suited for the
arithmetic of ANNs, resulting in huge and slow circuits. In their fairly recent seminal
work, Ball et al. generalized the concept of GCs to arithmetic GCs [BMR16], which can be
tailored to accommodate ANN-specific arithmetic [BCM+19], significantly outperforming
previous binary GC approaches. Dash builds on the cryptographic building blocks of
these works, extends them with efficient power-of-two scaling in the Chinese remainder
theorem representation, demonstrates their applicability in the offline-online scenario and
supports GPU acceleration.

Non-private ML settings massively benefited from the use of accelerators like GPUs.
Hence, using acceleration-friendly techniques for distributed private inference (DPI) is a
logical step. While binary GCs were accelerated on GPUs already a decade ago [HMSG13],
to the best of our knowledge, Dash is the first framework demonstrating GPU acceleration
of arithmetic GCs. In modern works on accelerating cryptographic inference using GPUs
such as GForce [NC21], GPU-accelerated GCs are not common. In fact, the authors [NC21]
formulate efficient GPU acceleration of GCs as an open challenge. Dash accelerates highly
optimized arithmetic GCs for CNN inference including the new garbled scaling gadget on
the GPU and outperforms the previous state-of-the-art in outsourced inference.

An alternative to purely cryptographically protected distributed inference is to rely on
TEEs such as Intel SGX or AMD SEV for the protection of data and/or model [MTH22,
NCW+21]. Slalom used a TEE combined with a simple stream cipher to protect input
data during inference while leveraging a co-located GPU to accelerate linear layers [TB19].
Combining lightweight cryptography with efficient TEE solutions results in small runtimes
for Slalom. However, Slalom needs to communicate the entire layer output between
TEE and GPU after each switch from linear to non-linear layer (and the other way around),
making the GPU’s co-location to the TEE mandatory. Dash can also use a TEE but only
needs to communicate the model in- and outputs with the inference device (e.g., GPU
accelerated) at online time, making the computation of the hidden layers non-interactive.

Our contribution
In this work, we propose a novel arithmetic garbling framework based on the ANN-
optimized arithmetic GCs from Ball et al. [BCM+19]. Dash uses heavily optimized GCs
to offer strong security guarantees for confidentiality of the inputs and outputs and the
integrity of the computation even in the presence of malicious parties. To achieve security

422 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

against such malicious parties, we can either rely on purely cryptographic techniques
such as cut-and-choose and zero-knowledge proofs or use TEEs. Furthermore, the whole
ANN can be garbled securely while the performance-critical GC evaluation (the protected
ANN inference) can be performed by an untrusted device. We introduce the notion
of LabelTensors that allow massive acceleration of this inference on GPUs, resulting in
significantly improved performance during inference compared to previous solutions. Dash
thus combines the advantages presented by GCs (very low communication complexity)
with the advantages presented by GPUs (massive parallelism). Furthermore, we introduce
an efficient scaling operation to arithmetic GCs, which allows us to further push the limit
of the size of ANNs that can be efficiently garbled and thus the accuracy of the inference.
Compared to secret-sharing-based MPC frameworks like Piranha [WWP22], where each
party contributes a share and the memory requirement increases linearly, our solution
has a constant memory requirement independent of the number of input providers. In
summary, our contributions are:

• Introducing LabelTensors which leverage the intrinsic parallel nature of ANNs and
allows us to evaluate them very efficiently on highly parallel GPUs. As a result,
Dash outperforms inherently serial state-of-the-art solutions.

• Enabling modern quantization schemes by developing a scaling operation to achieve
much higher accuracy on larger networks than previous GC frameworks as well as
increasing the ANN size a GC can handle effectively.

• Regardless of the number of layer-transitions from linear to non-linear and vice versa
in the model architecture, Dash requires only a constant number of communication
rounds and a constant communication volume.

• Combining GCs with TEE-enabled modern hardware to guarantee input privacy,
integrity of the computation, and output privacy.

• Dash can also be extended to guarantee security in the presence of an actively
malicious attacker controlling multiple parties.

• Dash has a constant computation-, memory-, and communication-overhead indepen-
dent of the number of participating input owners.

• Dash is open-source and source code will be released upon acceptance.1

2 Related Work
In 2017, Mohassel and Zhang [MZ17] introduced SecureML, a scheme for private inference
and training in a setting with two untrusted but non-colluding servers, which then train
the desired model using 2-party MPC techniques. The activation functions sigmoid and
softmax are approximated due to their high complexity in an MPC setting, and GCs
are used to further speed up the computation of these functions. DeepSecure [RRK18]
preprocesses the networks and encodes them into a binary circuit for garbling. During
the evaluation, optimized oblivious transfers are used for the evaluation of non-linear
operations. Liu et al. introduced MiniONN for secure inference on ANNs in the one-server
setting [LJLA17]. It also approximates activation functions and combines secret sharing
with GCs. The evaluation of all these schemes shows that ANNs with seven or more
activation layers generate so much overhead that the scheme is not usable any more.

Gazelle builds on MiniONN and uses HE in the linear layers and GCs in the
activation layers [JVC18]. Every part of Gazelle was optimized for performance, including
evaluating the linear layers and transforming the data between the linear and non-linear
layers. Gazelle supports inference only and advanced the state-of-the-art runtime at the
time by several orders of magnitude, mainly by optimizing the communication.

All these schemes use the CPU only. Since ML has benefited from GPUs, it is a natural
direction to explore when trying to improve the performance of private ML schemes.

1https://github.com/UzL-ITS/dash

https://github.com/UzL-ITS/dash

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 423

Delphi [MLS+20] transferred the techniques used by Gazelle to the GPU [MLS+20]. It
accelerates the linear layers by moving the HE computations via additive secret sharing
into the offline phase. In addition, a performance-accuracy tradeoff for ReLUs is calculated
and hyperparameter optimization is used for the resulting architecture. This architecture
remodeling of the ANN is timely and requires extensive retraining of the model.

Continuing with the GPU approach, Tramèr and Boneh introduced the Slalom scheme
in 2019 [TB19], providing verified and private inference on ANNs in a one-server setting.
The server must feature a CPU with a TEE and a co-located GPU. Several attempts
to secure the one-server by leveraging a TEE have been introduced [OSF+16, TGS+18,
HSS+18, HZG+18, LLP+19, ZHC+20], but Slalom is the first protocol to privately
outsource the expensive linear operations of ANN inference from the TEE to a GPU via
masking. The communication overhead increases linearly with the depth of the ANN. Like
Dash, Slalom can also protect against a malicious attacker.

Faster CryptoNets [CBL+18] is a scheme for encrypted inference in the one-server setting
which follows the two previously proposed CryptoNets [GDL+16, XBF+14] approaches
and uses HE to perform ANN inference over encrypted inputs. The activations are
approximated by quantized polynomials, which works best in the small interval [−1, 1].
Outside this interval, more significant errors occur. The practicable multiplicative depth
of the HE scheme limits the ANN to three layers, after which the authors delegate some
computations back to the clients, which contradicts the MLaaS setting and induces a large
communication overhead of several hundred GBs to TBs.

Recent approaches, such as Piranha in 2022, focus on the usability and perfor-
mance of the suggested solution [WWP22]. The Piranha platform allows developers of
secret-sharing-based MPC schemes to use GPUs efficiently without knowledge of GPU
programming. The models do not need to be retrained. Besides that Piranha does not
add any features to the existing schemes. Dash also focuses on usability: Model and input
owners can use the framework without knowledge of GCs or TEEs. They do not need to
modify their ML Model since Dash supports loading models in ONNX format.

3 Preliminaries
We introduce the basics of ANNs, GCs, and TEEs to facilitate the explanation of Dash.

3.1 Neural Networks
For classification tasks, ANNs are used to map an input to an output-class, e.g., a picture
of a handwritten digit to the output 0 - 9. Usually, this is done by a variety of layers that
are consecutively applied to the input. For our purposes, we will consider linear layers such
as dense layers and 2D convolutions, and non-linear layers like ReLU and sign activations.

3.2 Garbled Circuits
GCs were introduced by Yao [Rab05] and allow two-party MPC computations of binary
circuits against a semi-honest or malicious attacker [LP07]. To garble a gate with two input
wires x and y and an output wire z, the garbler generates two random labels l0, l1 ∈r Zκ2
of lengths κ representing the 0- and 1-bit semantic for all in- and outputs. For a given gate
functionality f : Z2

2 → Z2, the garbler produces the garbled gate as a table of 4 ciphertexts
ENlax,l

b
y
(lf(a,b)
z) for all a, b ∈ Z2. Here, lau corresponds to the label of wire u with semantic

a and ENk is a suitable encryption function with key k.
To garble an acyclic circuit of several gates, the above procedure is applied successively

from the input to the output gates. Since the evaluator only knows the wire labels for a
single input combination, he learns only the output label corresponding to this input. To

424 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

prevent the evaluator from distinguishing between labels with 0- and 1-bit semantics, GCs
can only be used for a single run. Besides, the ciphertexts must be shuffled per gate, as
a canonical ordering exposes the key-bit-mapping. In the classical setting, the evaluator
uses an oblivious transfer to obtain the labels of his private inputs.

We follow the conventional notation and note the garbling algorithm, which generates
the garbled circuit gC from a given circuit C, as Gb(C) = gC, e, d. The encoding information
e are used by the encoding algorithm to garble the clear input and obtain the garbled
input En(In, e) = gIn. We note the evaluation algorithm, which evaluates a garbled input
on a GC and outputs the garbled output as Ev(gC, gIn) = gOut. To decode the garbled
output, the decoding algorithm is used with the decoding information De(gOut, d) = Out.
As Dash deals with neural networks, we also write NN and gNN instead of C and gC.

3.3 Garbled Circuit Optimizations
Optimizations for GCs focus on their size, the computational complexity, and the hardness
assumptions needed to achieve appropriate security guarantees. Below, we concentrate on
optimizations which generalize to the arithmetical domain and are supported by Dash.

Point-and-permute was introduced by Beaver et al. [BMR90] and reduces the number of
necessary decryption operations to one ciphertext per gate. The idea is to append a pointer
pair (p, p) with p ∈r Z2 randomly chosen to each pair of input labels (l0 ‖ p, l1 ‖ p) to sort
the ciphertexts based on these pointer (called color bit). This ordering allows the evaluator
to determine the correct output using only one decryption. Free-XOR was introduced
by Kolesnikov and Schneider [KS08] and enables the evaluation of XOR gates without
performing cryptographic operations or transmitting ciphertexts. The garbler chooses
the input labels l0 with 0-bit semantics randomly, and the labels with 1-bit semantics as
l1 = l0 ⊕R, with R ∈r Zk2 being a circuit-wide constant. With output label l0z = l0x ⊕ l0y,
the output of an XOR gate is simply evaluated as the XOR of the two input labels. Half
Gates garble AND gates with only two ciphertexts per gate [ZRE15]. We give a detailed
description of the arithmetical generalization used in Dash below.

The optimizations described so far mainly focus on the communication complexity of
GC-based protocols. Another line of work also introduces computational improvements
regarding the gate-level encryptions [NPS99, LPS08, HEKM11, KSS12]. The state-of-the-
art was presented by Bellare et al. [BHKR13]. They propose to encrypt wire labels using
a cryptographic permutation instantiated by fixed-key AES. By instantiating AES with a
fixed and public key, the scheme only needs to perform a single key-derivation for a whole
circuit. While avoiding key derivations drastically improves the computation time, it comes
at the cost of introducing non-standard assumptions about AES to enable a security-proof
in the random-permutation model (for a more details, see [GLNP15, GKWY20]).

3.4 Arithmetic Garbled Circuits
Implementing arithmetic operations via conventional binary GCs is expensive, especially
compared to other MPC approaches, such as secret-sharing-based MPC. Ball, Malkin, and
Rosulek [BMR16] introduced garbling gadgets for efficient garbling of arithmetic circuits
over large finite fields. We will refer to their approach as BMR scheme. Considering our
use case, their gadgets allow free addition, free multiplication with a constant, and efficient
projection gates for arbitrary unary functions (w.r.t. communication complexity).

Starting from Free-XOR, Ball et al. [BMR16] consider labels as vectors of components
from Zp. The encoding of a value a ∈ Zp is given through la = l0 + aR, with l0 (chosen
individually per input wire) and R (circuit-wide constant) being vectors of random elements
from Zp. We call l0 a base label. The construction considers wires with different moduli,
called mixed-moduli circuits, and leverages different offset labels Rp for each module p. This
allows for a Free-XOR generalization and free addition-gates as shown, e.g., in [MPS15].

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 425

Point-and-permute is generalized by using an element from Zp instead of a single bit
and choosing 1 ∈ Zp as the point-and-permute component of each base label Rp. A
mixed-modulus-circuit consists of an acyclic structure of wires together with their moduli
and gates constructed as follows:

• Unbounded Fan-In Addition To compute (a, b) 7→ (a+b) mod p, we set lax+ lby ≡
(l0x + l0y) + (a+ b)Rp mod p.

• Multiplication by a public constant To compute a 7→ ac mod p, we compute
c · la ≡ c · l0 + caRp mod p with c being co-prime to modulus p (needed for technical
reasons in the security proof, see also [BMR16]).

• Projections for unary functions To compute an arbitrary unary function ϕ : Zp →
Zq, we construct a garbled projection gate with value a on input wire x that consists
of p ciphertexts of the form Enlax(lϕ(a)). Note that leveraging a generalization of the
garbled row reduction [NPS99], one ciphertext could be removed. For simplicity, we
ignore this optimization, as the saving is negligible for larger moduli.

While the first two gate types are free, the projection gate is not practical for large
moduli p. Therefore, Ball et al. use a composite primal modulus (CPM) Pk = 2 · 3 · . . . · pk
which is the product of the first k primes. They leverage the Chinese remainder theorem to
represent the label values in a residue (or CRT) representation. Using CRT representations
for optimizations in GCs was proposed before, e.g., in [AIK11]. From a circuit perspective,
every value of a conventional wire is now represented by a bundle of wires, with each of
the wires in a bundle corresponding to one residue in the CRT representation and one
prime factor of the CPM Pk. Hence, instead of having a projection gate with Pk possible
inputs, we can now represent this projection gate via k gates where the i-th gate has only
pi possible inputs. Both addition and multiplication (by a constant) gates remain free.

Sign Gadget Leveraging the mixed-modulus HG (see Section 7) with new optimizations
targeting ANN operations, Ball et al. [BCM+19] demonstrate the practicability of garbled
ANN inference. They propose a new approximated garbled sign gadget (see also Section 7)
working over CRT representations with sgnl,h(x) = l for x ≤ 0 and sgnl,h(x) = h for x > 0.

We use the sign function to construct the base-extension of our new scaling gadget.
Following Ball et al. [BCM+19], Dash uses the sign gadget to garble the sign- and ReLU
activations and provide highly parallel GPU implementations. To garble the sign activation,
the gadget is applied on the inputs sgn-act(a) = sgn−1,1(a). The ReLU activation is garbled
via ReLU(a) = a · sgn0,1(a), using the mixed modulus half gate for the multiplication.

3.5 Trusted Execution Environments
TEEs such as Intel SGX [MAB+13, CD16, Int21], AMD SEV [Kap16], Sanctum [CLD16],
ARM CCA [LLD+22] and Intel TDX [SMF21] allow programs, containers, or whole VMs
to be executed securely in hardware-sealed enclaves. The hardware isolates the enclave
from other programs on the host, regardless of privilege level or CPU mode. Enclave code
and data are protected even from a compromised operating system or hypervisor.

The key feature of TEEs besides strong memory isolation is remote attestation, a
process that guarantees that a specific enclave, specific in the sense of the code and data
it contains, has been deployed on a protected system. One distinguishes between local
and remote attestation. Using remote attestation, an enclave authenticates itself (i.e., the
code, identity, and the fact it is executed in a trusted environment) to a remote third
party. This makes TEEs particularly attractive for use in cloud computing offerings like
MLaaS. The cloud provider creates an enclave to which the cloud customer establishes a
secure connection and authenticates the enclave via remote attestation. If two or more
distrustful parties want to perform outsourced computation together, they can outsource
their data and computation to a mutually trusted enclave [CB19].

426 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

Like Slalom, we use Intel SGX over newer TEEs such as TDX or AMD SEV to
minimize the trusted computing base. SGX applications are divided into a trusted and
untrusted component. The trusted component runs inside the enclave and communicates
with the untrusted part outside the enclave through an interface defined by the developer.
The trusted part of the application and the communication between the two components
should be kept small to reduce the potential attack surface and improve performance.

Intel SGX was introduced in Intel Core CPUs in 2015, supporting 128MB to 256MB
of Processor Reserved Memory (PRM) shared by all active enclaves. The original use
in consumer devices was discontinued, but SGX remains a heavily supported feature in
server-grade CPUs such as the 4rd Gen Intel Xeon Scalable server CPUs, providing enclaves
with up to 1TB of protected memory. SGX’s enclave memory is encrypted and integrity
protected outside the CPU package. The memory management unit (MMU) decrypts and
integrity checks data before loading it from memory into caches or registers. Nearly all
server-level machines support TEEs (SGX by Intel or SEV by AMD), and they are used
in practice, e.g. by the Signal messenger servers. As the main motivation for Dash are
MLaaS scenarios in which the sensitive computation is performed on a server level device,
it is valid to assume a TEE can be used.

4 Design of Dash
Dash provides an efficient implementation of GCs for BMR circuits that outperforms
previous approaches significantly and allows larger models to be garbled effectively. Im-
provements are achieved through three main contributions. Firstly, the implementation
contains state-of-the-art techniques for GCs (see Section 3) and makes use of the approxi-
mated ReLU technique of Ball et al. [BCM+19], which gives a significant speedup.

Secondly, we make use of specialized ML hardware such as GPUs. Previous imple-
mentations of GCs for ANNs, such as those by Ball et al., use a scheduler to choose the
next gate in the GC to be evaluated. Due to this strictly linear approach, the massive
parallelity of GPUs could not be used properly. In contrast, we do not look at individual
gates but treat gates on the same layer as tensors, i.e., as multidimensional objects called
LabelTensors. This allows the evaluator to evaluate a complete circuit layer in parallel. As
a result, Dash scales up easily to large circuits with very high width. Classic examples of
this kind of circuit are ANNs, but they also appear in many cryptographic use cases (e.g.,
via parallel encryption of blocks by AES or ChaCha20).

Thirdly, Dash includes a new garbled scale operation, allowing much larger networks
to be processed due to being able to use more effective quantization schemes.

The modular approach taken in Dash’s implementation allows for many deployment
scenarios. For example, we can use TEEs both for the garbler and the evaluator, allowing
the user to work with trusted data on an untrusted platform easily. Our end-to-end
framework supports the common interchange format ONNX (used with TensorFlow and
PyTorch). Hence, a user wanting to garble an ANN can easily enter a model in this format
and will obtain a garbled version of it. This makes Dash usable for everyone.

4.1 Quantization and Encoding
ANNs typically operate over 32-bit floating point numbers. To increase the throughput
and reduce the memory requirements of the models during the inference phase, models and
inputs are quantized to integers. To garble ANNs, we need to quantize them as well. Dash
supports two quantization schemes we call SimpleQuant and ScaleQuant. SimpleQuant has
been used before in GNNP [BCM+19] and ScaleQuant is a more advanced quantization
scheme, inspired by Gupta et al. [GAGN15] and also leveraged by Slalom [TB19]. Using

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 427

In
pu
t

Sh
ift
up

Sc
ale

Sh
ift
dow

n

14

14

14

1 0

1

7

0

0

0 1

1516

16

29

29

15
29-1

15

0
2 2

0

-15

Positive

Negative

Undefined

(a) Schematic visualization.

Scaling Base Extension

(b) Circuit of the scaling gadget in Dash.

Figure 1: Visualization of our scaling operation in ZP3 .

SimpleQuant to quantize a value x, we multiply with a small quantization constant α and
round to the nearest integer: SimpleQuant(x, α) = round(x · α).

In ScaleQuant, we extend the forward-pass with down-scaling operations, which allows
quantizing larger ANNs without affecting the model’s predictive power significantly. With-
out a garbled scale operation, previous arithmetic garbling schemes were not able to use
ScaleQuant. This significantly limited the size of models that could be garbled effectively.
We introduce the garbled scale operation in Subsection 4.2. To quantize a floating point
number x, we use ScaleQuant(x, `) = round(x · 2`). In an ANN all weights are quantized
with ScaleQuant(x, `) and all biases with ScaleQuant(x, 2`). In the forward pass, the
outputs of layers with quantized parameters are then down-scaled with ScaleQuant(x,−`).

Our arithmetic GCs operate on values from the finite ring ZPk
. To be able to garble the

quantized ANNs, all integers, including all weights, biases, and inputs, must be encoded in
ZPk

. We map all positive integers, including zero, to the lower half of ZPk
and all negative

numbers to the upper half of the ring: Encode(x) = x mod Pk (see also Figure 1a).

4.2 The Scaling Operation
Scaling a number x by some scaling factor s means to compute y = bx/sc. We only consider
s = 2, as successive applications of scaling by 2 can be used to implement ScaleQuant.
First, we describe our scaling operation from a high-level perspective without considering
that the inputs to Dash are in CRT representation. Next, we explain the details regarding
the CRT representation and how the scaling operation is implemented in Dash.

4.2.1 High-Level Steps

Figure 1a shows the steps (1) ShiftUp, (2) Scale, and (3) ShiftDown of our scaling operation
exemplarily for the case P3. Table 1 shows an example for P2 = 6 including the outputs
of all intermediate steps. The ShiftUp(x) = x + (Pk/2) step limits the result of the
following Scale(X) = bx/2c step (including the base extension) to the positive value range
[0, Pk/2− 1]. Finally, we apply the ShiftDown(x) = x− bPk/4c step to move the result to
the correct value ranges [0, bPk/4c] and [dPk/(3/4)e, Pk − 1], respective [−bPk/4c, bPk/4c].

4.2.2 CRT Representation

The shift steps generalize easily to the CRT representation, as addition and subtraction
can be performed independently on the individual residues. Figure 1b visualizes the scaling
step (with base extension). To scale the residues x̃2, . . . , x̃k after the ShiftUp in step 2 we
use a simple technique described by Jullien [Jul78] and compute ỹi = (x̃i− x̃0) ·2−1 mod pi,
where 2−1 is the multiplicative inverse of 2 mod pi and pi is the i-th prime number.

428 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

Table 1: Step-by-step outputs of the scaling gadget for all inputs in ZP2 . x: Input value
to the scaling function. x±: Sign information of x. x↑ and x↓: Output of the ShiftUp
and ShiftDown operations. b: Scaling operation after the ShiftUp and before the base
extension. ϕ(x): Residue representation of x. ϕ−1() leverages the CRT to reconstruct a
value from its residue representation. y: Output of our base extension algorithm.
x x± ϕ(x) x↑ x±↑ ϕ(x↑) α = [0, b(ϕ(x))] ϕ−1(α) ϕ−1(α)± y ϕ(y) ϕ(y↓) y↓ y±↓

0 0 [0, 0] 3 -3 [1, 0] [0, 1] 4 -2 1 [1, 1] [0, 0] 0 0
1 1 [1, 1] 4 -2 [0, 1] [0, 2] 2 2 2 [0, 2] [1, 1] 1 1
2 2 [0, 2] 5 -1 [1, 2] [0, 2] 2 2 2 [0, 2] [1, 1] 1 1
3 -3 [1, 0] 0 0 [0, 0] [0, 0] 0 0 0 [0, 0] [1, 2] 5 -1
4 -2 [0, 1] 1 1 [1, 1] [0, 0] 0 0 0 [0, 0] [1, 2] 5 -1
5 -1 [1, 2] 2 2 [0, 2] [0, 1] 4 -2 1 [1, 1] [0, 0] 0 0

To construct the base extension and compute x̃1 we leverage the observation that x̃1
either contributes exactly 0 or exactly Pk/2 to the sum of the reconstruction of x̃, since
x̃ ≡

∑k
i=1 αi · x̃i mod Pk where α1 = Pk/2 and x̃1 ∈ Z2. Since all values must be positive

after the scaling operation (see ring 3 in Figure 1a), we can use our sign gadget sign0,1 to
test whether x̃1 = 0 or x̃1 = 1 (see base extension in Figure 1b).

4.2.3 Garbling

This scaling operation is surprisingly cheap in our setting. For Pk/2 and Pk/4 we introduce
k additional constant garbled inputs respectively (offline). The additions and subtractions
of the shift operations are free in terms of needed ciphertexts. To compute ỹi for i ≥ 2 in the
scaling step, the number x̃ mod 2 must first be projected into the space {0, . . . , pi−1} via a
projection gate with two ciphertexts (see also Figure 1b). Then, the computation (x̃i− x̃0)
can be performed by several free subtractions. The multiplication with 2−1 mod pi is a
multiplication with a constant and thus also ciphertext-free. To finish the garbling of the
scaling operation we need to garble a single sign gadget for the base extension. If m1, . . .mt

represent the mixed-radix base used in the approximation of the sign gadget and p1, . . . , pk
is a base of k primes used for the residue representation, the cost (in terms of number of
ciphertexts) to garble the sign gadget is α = t

∑k
i=1 pi + 2k

∑n
i=2 mi + 2n(k − 1) + m1.

Garbling the scaling gadgets results in α+ (k − 1)2 ciphertexts.

4.3 System-level Architecture
Figure 2 shows a high level overview of Dash’s modular system-level architecture and
components involved in the garbling process (from the top to the bottom). Garbling the
Dense and Conv2D operations is straight-forward, as these linear operations only depend
on multiplication with a public constant (the weight) and addition. To add the bias to the
resulting label, we model it as a constant circuit input. To garble the ReLU activation,
we follow the approach of Ball et al. [BCM+19] see Subsection 3.4 and Section 7. The
garbling of the Rescale layer is performed as described in Subsection 4.2.

4.4 Feature Set in Comparison
Here, we compare Dash’s features and properties to other DPI schemes for ANNs. Table 2
shows that Dash compares positively to these other schemes concerning the provided
feature set. We explain the compared features: An activation functions is pure if it is
not modified to be suitable for MPC techniques. Off-the-shelf models are conventionally
trained models without tuning for the DPI setting. Convenient model-loading means
out-of-the-box model usage from frameworks like PyTorch or TensorFlow. CR abbreviates

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 429

Dense Conv2D Sign ReLU Rescale

Projection

MiniProjection

MixedMod-
HalfGate

Dense Conv2D ApproxSign ApproxReLU Rescale

CUDAAES AES-NI

ApproxResGadget

ApproxSignGadget

RescaleGadget

If is
used, place Rescale
behind linear layers.

Quantize inputs and model parameters

GPUCPU

ScalarTensor

LabelTensor One Tensor per residue (CRT representation)

MRSAddition

Figure 2: System-level architecture of Dash.

constant number of communications rounds and CV communication volume with respect
to the number of layer-transitions — in the model architecture — from linear to non-linear
and vice versa. The cryptographic building blocks from GNNP would also fully support
Constant CRs and Constant CVs if the scheme supported the offline pre-processing model,
and the implementation would sacrifice the streaming feature.

The categorization into Optional, Full, Limited and No support arises from the critical
path through the inference process. If a scheme supports offline pre-computation, the
categorization is based on the online phase. Optional support means that the Scheme can
suppress a feature in favor of performance or other requirements. Thus, optional support
is in general stronger than full support. Limited support means that a feature is only
partially supported, e.g., Slalom and Goten can only accelerate the linear layers of a
model on the GPU and must communicate with the TEE for all non-linear layers.

Many frameworks do not use TEEs, which may be since SGX (one of the most common
TEEs) constituted a severe memory bottleneck until recently. This has led to paging
artifacts and immense performance losses. However, in the recent versions of SGX, the
enclave memory is much larger and paging becomes less of a problem. The security benefits
of the TEE for Dash are discussed in the following section.

The GPU support is one of the outstanding features of Dash: Both linear and non-linear
layers can be accelerated on a GPU without breaking the underlying security guarantees.
Furthermore, due to the introduction of LabelTensors, Dash strongly benefits from the
massive parallelity of garbled CNNs. Activation functions can either be computed with
full accuracy, or as in many other works, in an approximated fashion to speed up the
computation. While many frameworks support off-the-shelf models, meaning models
that were trained conventionally without the DPI setting in mind, Dash goes a step
further: Users can conveniently load their models in the ONNX format, which is widely
supported by standard ML frameworks such as TensorFlow or PyTorch. Together with the
GPU-support, Dash can be seen as a drop-in replacement for conventional and insecure
inference engines in many existing ML applications.

Dash requires only a single round of online communication regardless of the depth of
the ANN, or the number of alternating linear and non-linear layers. While gnnp [BCM+19]
explicitly does not exploit this outstanding property in its implementation fancy-garbling
and streams the GC to the evaluator during the online phase, Dash capitalizes on this
property and thus significantly accelerates the online phase. Dash can evaluate the
garbled ANN layer by layer without being slowed down by network communication at

430 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

Table 2: Feature Comparison. CR: Communication rounds, CV: Communication volume.

Scheme

Dash

Dash
(w/o TEE)

gnnp [BCM +
19]

Slalom
[TB19]

SecureM
L
[M
Z17]

M
iniONN

[LJLA17]

CryptoNets [CBL +
18]

Delphi [M
LS +

20]

CryptGPU
[TKTW

21]

CrypTFlow
[KRC +

20]

M
P2M

L
[BCD +

20]

Piranha
[W

W
P22]

SIM
C
[CGOS22]

M
use [LM

SP21]

Goten
[NCW

+
21]

Gazelle [JVC18]

DeepSecure [RRK18]

TEE G# - - - - - - - - - - - - -
GPU G# G# - # - - - # - - - - # - -
Pure activation fun. G# G# G# - - G# - G# #
Off-the-shelf models G# G# G# G# - # # # #
Convenient model-loading # - - - # # - - - - - -
Constant CRs # - - - - - - - - - - - - -
Constant CV # - - - - - - - - - - - - -
Malicious security # # - - - - - - G# G# - -
Supports learning - - - - - - - - - - - - -
Unlimited Input Owner(s) - - - - - - - # - - - -

G# Optional, Full, # Limited, − No support

each transition from linear to non-linear layer (or vice versa). For a fixed input size
(sum of inputs from all input providers) and a fixed CPM, Dash has a constant online
communication volume regardless of ANN architecture or the number of input providers.

If TEE-Support like Intel SGX is provided and the use-case agrees with the TEE-
assumption (see Subsection 4.7), Dash can optimize the OTs for communicating the
garbled inputs to the garbling device away and can run the inference with more than two
input providers. This distinguishes Dash from secret-sharing-based approaches, which are
inherently limited in this aspect as they have to communicate and store a share for each
input provider. Furthermore, trough leveraging the TEE Dash achieves malicious security
and can thus enable the use of ML inference in security critical domains, where protocol
participants are not trustworthy and semi-honest security is not sufficient.

If the hardware does not provide TEE support, then Dash does not achieve security
against malicious attackers. However, all other Dash optimizations are preserved and
Dash remains secure in the semi-honest outsourced inference scenario. In this scenario,
Dash still beats the current SOTA scheme (see also [NC23]) gnnp for the outsourced
inference case (gnnp also does not consider network overhead due to OTs in the evaluation).

Like other schemes, Dash does not support training, as this requires constant parameter
changes, which does not fit well with offline pre-computation. Secure training with feasible
computation requirements is an open research problem and not the focus of this work.

4.5 Use Cases
Using Dash guarantees several important security objectives, depending on the concrete
scenario. All scenarios share a common structure with the following participant roles:

• The model owner who holds the ANN NN.
• The input owner who holds an input In to the ANN (for inference). Our framework

supports multiple input owners that each contribute a part of the input.
• The inference device, a device aimed to compute the inference of an ANN.
• The garbling device, a device to garble the circuit and the inputs.
• The result owner who receives the inference result.

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 431

Input
Owner(s)

Model
Owner

Result
Owner

Inference Device

Garbling Device
0. Garbling Device attests against Input

Owner, Model Owner, Result Owner
1. Send model
2. Create GC , encoding

information , decoding information
3. Send GC
4. Send input
5. Create garbled input from and
6. Send
7. Evaluate to get the garbled

output
8. Send
9. Use to get Output from

10. Send output to the Output Owner

Encrypted &
Authenticated

Clear

Channels

Figure 3: Example workflow of Dash. The first four steps can be pre-computed in an
input-independent offline phase. Note that the inference device works on garbled data.

Dash runs in the typical outsourced inference scenario: A customer outsources its inference
workload to a single server in a fire-and-forget manner: Sending input and output is
the only communication during the computation in the online phase. Dash allows fine
adjustments to the participant roles in this setting. Some examples of conceivable scenarios
are:

• The classical outsourced inference scenario, where the model owner also controls the
garbling device, the input owner also obtains the result as result owner, and the
inference device is its own party.

• A more involved outsourced inference scenario with two different input owners.
• A disjoint setting where each participant is its own entity.

Compared to previous works like Slalom, Goten and the implementation fancy-garbling
of gnnp, we do not assume a co-location of different devices or parties (especially the
garbling and the evaluation device must not be co-located). The typical workflow of Dash
is illustrated in Figure 3.

Similar to Slalom [TB19] and Gazelle [JVC18], we also split the computation into an
offline and an online phase. In the offline phase (steps 1, 2, and 3), the model owner can
already use the garbling device to prepare gNN. Since this is typically the bottleneck of
the computation, moving it to the offline phase allows us to speed up the online phase
significantly. In the online phase, the input owner performs the inference with its sensitive
data In and profits of the pre-computation. We assume the messages in step 1, 4, and 10
to be sent over an authenticated and encrypted channel. The messages in step 3, 6 and 8
are protected through the garbling properties.

4.6 Security Objective
We distinguish three security objectives: input privacy, integrity of the inference, and output
privacy. For many applications, the most sensitive information is the input In. Following
the notion of Tramèr and Boneh [TB19], this security objective is called input privacy. We
always guarantee input privacy, even if all other participants cooperate (including other
input owners). Another essential property, called integrity of the inference, ensures that,
at the end of the protocol, the result owner really obtains NN(In), i.e., the inference is
computed correctly. GCs inherently guarantee the integrity of the computation and the
inputs [BMR16]. However, in the case of a malicious model owner, we can’t prevent the
attacker from submitting a different network NN∗. In this case, we will thus assume that
the model owner first commits to NN in order to allow verification that the correct network
was used. Analog to the input privacy, the output of the computation is also sensitive
information. It should only be obtained by the result owner, so output privacy can be

432 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

guaranteed. We will always guarantee output privacy.
While other works also aim to protect the model, many model extraction attacks (e.g.,

[CJM20, PMG+17, TZJ+16]) that reverse the architecture and the weights of a model
from various sources, like input-output behavior, make model privacy an impossible goal
for many scenarios. We thus do not provide it in our standard scheme. As we work in the
outsourced inference setting, we always assume that the garbling device and the inference
device do not collude.

4.7 Security of Dash
Our security analysis against attackers is built on two assumptions: the garbling assumption,
which assumes that GCs are secure, i.e., they are private, oblivious, and guarantee
authenticity [BMR16]. More formally, privacy guarantees that an attacker can not learn
anything from (gNN, gIn, d) except for the correct output Out. Obliviousness means that
(gNN, gIn) do not reveal information about In. Finally, authenticity means that an attacker
knowing (gNN, gIn) can not generate ˜gOut 6= gOut such that De(˜gOut, d) 6= ⊥. A long line
of research has established that one can base this assumption on different well-established
cryptographic assumptions. While this assumption guarantees security against a wide
range of attacks, it does not prevent all attacks performed by malicious parties. To prevent
the remaining attacks, we use our second assumption, called the device assumption, which
guarantees that the garbling device acts as a trusted third party. After our security
analysis, we will present two approaches on how to obtain the device assumption: one will
be based on a TEE and the other will use purely cryptographic means. We do not make
additional assumptions about the system or the behavior of other parties.

A quick inspection of Figure 3 shows that the security guarantees of GCs along with
the device assumption guarantee security: Regarding the input (and output) privacy, by
the device assumption, we only need to consider a scenario where some input owners, the
model owner, and the inference device collaborate maliciously to obtain information about
the input of an input owner or the output of the computation, as the garbling device acts
as a trusted third party. The confidentiality of each input follows directly from the privacy
property of GCs and the fact that the garbling device is trusted. Hence, given gNN and
garbled inputs gIn, an attacker is unable to learn anything about the plain input. Similarly,
nothing can be learned about the plain output without the decoding information d due to
the obliviousness of the garbled circuit. Due to the device assumption, it is only sent to
the result owner.

If the correct ANN is handed to the trusted garbling device, computation integrity
again follows from the authenticity property of GCs and the fact the garbling device is
trusted. An attacker cannot generate a manipulated output whose decoding is a valid
output given the GC and garbled inputs. Hence, the computation result will always be an
encryption of NN(In), as the garbling device is only able to work on the garbled inputs gIn
presented by the input owner and the gNN. We only need to guarantee that the model
owner does indeed hand out the correct model to the garbling device. As discussed above,
we ensure that the model owner first needs to commit to NN, e.g., by publishing a hash of
it. As the garbling device is trusted due to the device assumption, after having obtained
the model, it can verify that the given network matches the commitment.

On the Device Assumption

In our security discussion above, we used the device assumption that guaranteed that the
garbling device behaves honestly. We now discuss two ways to guarantee such a behavior.

In the first, purely cryptographic, way we consider the classical setting where the
garbling device and the input owner are one entity. Input privacy and output privacy
are trivially maintained by the privacy and the obliviousness of the GC. Finally, in

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 433

order to prevent the garbling device from manipulating the circuit, we can either use the
cut-and-choose approach [Cha82, LP15], make use of zero-knowledge proofs [GMW86],
or use authenticated garbling schemes [NNOB12, WRK17]. For example, when using
zero-knowledge proofs, all parties first need to commit to their private information (such
as the inputs or the model) and to their randomness. Whenever a party now send some
value to another party, it also sends a zero-knowledge proof along to convince the other
parties that the sent message is consistent with the protocol, the earlier messages, the
committed private information, and the committed randomness. While such approaches
have been dismissed as purely theoretical in the past, the last decade has seen the design
of very efficient and small zero-knowledge proofs, see e.g., [BBB+18, AHIV23, YSWW21].
These developments have been used to show that this approach does in fact allow for a
relatively efficient implementation [ASH+20]. To guarantee a private exchange of the input
and output information, oblivious transfer protocols [Rab05] need to be used. For a more
in-depth discussion see [EKR18].

The second approach uses a TEE on the garbling device and assumes that it is secure.
This assumption has been used already in different works, e.g., by Tramèr and Boneh [TB19].
While TEEs have been studied for a much shorter time period, there are certain robust
designs that have withstood attacks, e.g. [CLD16, BGJ+19]. We stress here that even
for the systems already in production, like Intel SGX or AMD SEV, the vast majority
of attacks does not concern the cryptographic black-box guarantees, but make use of
side-channel attacks. While TEEs are conceptually secure, side-channel attacks affect the
implementation. Similarly, cryptographic primitives are also conceptually secure, but can
be affected from side-channel attacks, if the implementation is not hardened. In protocol
development, it is generally assumed that the underlying cryptographic primitives are
implemented securely. It is therefore a reasonable assumption that the TEE implementation
used for Dash also does not suffer from side-channel leakage. Due to the remote attestation
feature, third parties can be assured that code and data inside an enclave are protected
and that the code is executed as expected. However, this can be completely done in the
offline phase and thus does not influence the performance of the online phase.

5 Implementation
Dash is implemented in C/C++ and CUDA 12.2 and uses the TEE assumption to
guarantee security against malicious attackers, i.e., we assume that the TEE on the
garbling device acts as a trusted third party. To parallelize CPU computations, we leverage
OpenMP. We use the Linux Intel SGX SDK version 2.21 (with in-kernel drivers) to support
the latest Intel Saphire Rapids Scalable Xeon CPUs for our TEE implementation. For
high-quality randomness in the wire label generation, we use Intel’s Digital Random
Number Generator (DRNG). As a driver for our random-permutation-engine, we use
the hardware-accelerated AES-NI instructions on the CPU and the OpenSSL AES (ECB
mode) implementation on the CUDA-enabled GPU with T-Tables in constant memory. To
send the wire labels made of Zp elements to the AES-based fixed-key permutation, they
first have to be compressed to 128-bit chunks. Like Ball et al. [BMR16], we use the Horner
method for compression. The compression compress(l) of a label l with n components and
wire modulus q is simply computed as compress(l) = (. . . (lnq + ln−1)q + . . .)q + l1.

5.1 Dash-as-a-Framework
From the perspective of a model owner, the only thing needed to use Dash is an ANN in
the standard ONNX format. Then, the general procedure to garble the ANN is as follows,
where encoding of weights and inputs into ZPk

is handled automatically.

434 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

// 1. Step: Create circuit from
model-file

auto circuit = load_onnx_model("path",
q_method);

// Optional: Optimize quantization on
data

circuit->optimize_quantization(crt_size,
example_data);

// 2. Step: Garble quantized circuit,
sign accuracy: ‘acc‘

auto gc = new GarbledCircuit(circuit,
crt_size, acc);

// Optional: Move GC to GPU
gc->cuda_move();

(a) Garbling a CNN given as ONNX model-file.

// Step 1. Quantize input
auto q_in = quantize(input, q_method);
// Step 2. Garble input
auto g_in = gc->garble_inputs(q_in);
// Optional: Move q_in to GPU
auto g_dev_in =

gc->cuda_move_inputs(g_in);
// Step 3: Evaluate GC on CPU
auto g_out = gc->cpu_evaluate(g_in);
// Or on GPU
gc->cuda_evaluate(g_dev_in);
auto g_out = gc->cuda_move_outputs();
// Step 4: Decode outputs
auto out = gc->decode_outputs(g_out);

(b) Evaluation of a GC.

Figure 4: C++-interface of Dash

1. Import the model as a circuit to Dash and quantize weights and biases using
SimpleQuant or ScaleQuant. If SimpleQuant is used, optionally optimize quantization
of the circuit with representative example data (the quantization constant is chosen
based on a given CRT base Pk and the maximal computed value during the inference).

2. Garble the quantized circuit (and optionally move it to a GPU).
Independently of the chosen use case, the following steps must be performed to infer

the plain output from an inference with the GC.
1. Quantize the inputs to integers.
2. Garble the inputs (optionally move them to a GPU).
3. Evaluate the GC on the garbled inputs (optionally move the result back to the host).
4. Decode the garbled outputs.
Like ANNs, our circuits and GCs consist of layers such as Dense, Conv2d, ReLU, Sign,

Flatten, or Rescaling. All operations are implemented in a garbled and non-garbled variant
to facilitate testing, experimentation, and quantization tuning. In addition to the ONNX
model loader, users of Dash can also construct circuits directly in code with an intuitive
interface inspired by the sequential models of PyTorch and TensorFlow. The interface of
Dash’s SGX implementation behaves analogously to the implementation without a TEE.

5.2 LabelTensors
In general, arbitrary arithmetic GCs are not particularly well-suited for the evaluation
on CUDA-enabled GPUs, as they do not fit nicely into the concept of single-instruction-
multiple-thread (SIMT). In CUDA threads are grouped into grids of blocks and blocks
are executed in warps of 32 threads on the streaming multiprocessors of the GPU. As all
threads of a warp share the same program counter, the parallel evaluation of heterogeneous
gates, meaning the execution of threads with diverging control flows, will cause warp
convergence, i.e. a serialization of those threads. Furthermore, the arithmetic GCs
handled by Dash are neither strictly hierarchical nor uniform due to their global circuit
wires and the modulus-based adaptive label length. To contribute enough entropy to
the fixed-key AES permutation after packing, the labels with smaller modulus are longer
(have more components) as the labels with larger modulus [BMR16]. This makes memory
coalescing difficult, since labels of gates that can be executed in parallel are not necessarily
consecutively arranged in the global memory of the GPU.

Nevertheless, CNNs typically have quite large homogeneous layers consisting of many
similar operations, which allows for optimizations with regard to a GPU evaluation. We

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 435

(a) Leveraging LabelTensors in the CRT
domain in independent streams on GPUs.

1 0 1 0

1 1 1 0

0 0 1 0

0 0 1 0

0 0 1 0

2 2 1 0

1 0 2 2

0 0 1 0

0 1 0

1 1 0

0 1 0

0 1 0

4 0 1 0

3 2 1 3

1 4 2 2

0 0 3 0

1 1 3

0 2 1

0 0 0
* =

1 3

0 3
2 3

0 3
2 1

3 3

Filter

Input LabelTensor

Output
LabelTensor

3x3x1

LabelTensor
4x4x1(x80)
LabelTensor

4x4x1(x55)

LabelTensor
4x4x1(x128)

2x2x1(x55)

2x2x1(x128)
2x2x1(x80)

If
output global 0-wire

(b) Conv2D operation over LabelTensors in Dash
(for simplicity without bias, stride=1).

Figure 5: Visualization of the LabelTensor approach in Dash. The length l of a label with
modul pi is defined as l = b128/ log2(pi)c, since a longer label can not be packed into a
128bit chunk which is needed in the permutation used for garbling.

introduce the notion of LabelTensors to handle the labels in arithmetic GCs for CNNs
efficiently. LabelTensors in Dash are the counterpart of conventional tensors heavily
used in machine learning frameworks like PyTorch or TensorFlow. The basic idea behind
LabelTensors is to add another dimension to a conventional tensor to explicitly model the
arithmetic GC labels. LabelTensors structure their values such that all labels of the same
length lie along the tensor-width, -height and number of input-channels, consecutively
in memory. Since all components of a label now lie consecutively in memory optimized
CUDA kernels can coalesce memory accesses in warp granularity.

All garbled operations and utility functionalities of our implementation, such as label en-
/decryption and label de-/compression for CPU and GPU are based on these LabelTensors
and work in the typical SIMT-style of CUDA without any further abstraction directly over
the corresponding memory areas (see Figure 5b for a visualization of the Conv2D operation).
For examples of the encountered operations over the LabelTensors see Subsubsection 6.2.2.
This optimization concept removes the need for expensive gate-object scheduling. In
some sense, our approach can be seen as an arithmetical generalization of the JustGarble
approach [BHKR13], which implements binary GCs with only memory blocks and indices
and thus eliminates the need for expensive gate objects. As opposed to the implementation
of gnnp (called fancy-garbling) [BCM+19], which generates a large overhead due to gate-
object scheduling with only eight threads, LabelTensors enable Dash to efficiently leverage
thousands of cores simultaneously on hardware accelerators like GPUs.

We use one LabelTensor per residue in the CRT representation and perform the
operations on them in independent CUDA streams. This way, the operations over the
residues of different CRT moduli and thus over labels of different length are processed
in independent blocks on the streaming processors of the GPU and warp convergence is
prevented (see also Figure 5a). The performance gain from the LabelTensor architecture
was evaluated with several microbenchmarks, which will be presented in the next section.

6 Evaluation
Intel offers a trusted library version of OpenMP libsgx_omp.a for parallelization within
SGX Enclaves. This library requires an OCALL and an ECALL to create a thread and an
OCALL to wake up and pause threads and therefore has a considerable application-specific
overhead compared to the conventional OpenMP library. For the model architectures in
our evaluation, this overhead exceeds the performance gain achieved by our parallelization.
Meaning, the usage of OpenMP inside the enclave is rendered useless for our model

436 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

architectures. Thus, Dash only parallelizes CPU operations outside of the SGX enclave.
However, the inference device is untrusted, and we can evaluate the inference in the online
phase using the parallel CPU implementation without violating Dash’s security properties.
The server features an Nvidia Geforce RTX 4090 GPU to evaluate Dash’s speedup.

6.1 Microbenchmarks

For the microbenchmarks, we garbled all layers with CPM P8, meaning the CRT repre-
sentation consists of the residues modulo the first eight prime numbers. Furthermore, we
excluded host-device transfer overheads since the hidden layers in CNNs do not suffer from
them during the online phase. To evaluate the scalability of the garbled CNN layers over
Dash’s LabelTensors on CPUs, we measured the runtimes for different input dimensions
with 1-16 threads. The results in Figure 6a clearly show that every layer type, including
the activation functions and our proposed scaling mechanism, benefit significantly from our
parallelization-friendly LabelTensors. Apart from the transition from 8 to 9-11 threads (our
CPU has eight physical cores), almost every additional thread brings a clearly measurable
performance gain. The convolution operation benefits most from additional threads, but
also, the other layers achieve speedups of up to an order of magnitude.

To evaluate the benefit of Dash’s GPU extension, we measure the achieved speedup
against the CPU implementation, leveraging 16 threads. As shown in Figure 6b, all garbled
layers, even the activation layers and the scaling layer, achieve a speedup when evaluated
on the GPU. Starting with an input size of 256, our scaling layer can benefit from the
GPU’s parallelism and achieves a speedup of up to 6x for 214 inputs. Above a dimension
of 256 inputs, the GPU implementation of the activation functions shows a speedup-factor
of 1.3 and 1.1 for the 100% accurate ReLU respective sign activation functions. At 214

inputs, the speedup grows to a factor of 5.8 respective 5.3, clearly outperforming the
CPU implementation. Our implementation of the activation functions is based on the
approximated sign gadget. For completeness, we also measured the speedup at a reduced
precision. At 99% precision, our GPU implementation can achieve a speedup of up to
one order of magnitude. Since most of the computational effort in our garbled CNNs lies
in the linear layers and we replaced max-pooling with strided convolutions compared to
gnnp, the speedup we achieve in CNN inference due to lower precision is negligible. In the
following, our evaluation exclusively uses garbled activation functions with full precision.
Nevertheless, the achieved speedup can make a difference if RAM-/GPU-Memory-Usage
is a concern or in use cases in predictive modeling for logistic regression or small fully-
connected ANNs. As expected, the garbled linear layers leverage the parallelism of the
GPU best and achieve speedups of up to two orders of magnitude.

Figure 6c shows the memory usage of Dash’s GPU implementation after the GC and
the garbled inputs are transferred to the device memory. As expected, large inputs require
the most memory, especially in the non-linear layers. If it is possible to compute with
reduced accuracy, the memory requirement for the ReLU and Sign can be significantly
reduced up to a factor of 7. To further reduce the compute and memory requirements, it
would be interesting to explore the use of shorter CRT bases with larger moduli in future
research. A shorter CRT base would result in less GC labels per circuit input and larger
moduli in shorter labels with fewer components.

6.2 Model Benchmarks

Dash supports the preprocessing paradigm, and we exclude the offline phase from our
evaluation, as the cloud provider will pre-compute it before the customer data arrives.

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 437

2 4 6 8 10 12 14 16
Number of Threads

101

102

103

R
un

tim
e

(m
s)

ReLU

128 2048 16384

2 4 6 8 10 12 14 16
Number of Threads

101

102

103

Sign

128 2048 16384

2 4 6 8 10 12 14 16
Number of Threads

101

102

103

Dense

128 512 2048

2 4 6 8 10 12 14 16
Number of Threads

103

104

Conv2D

64x64x3 128x128x3 256x256x3

2 4 6 8 10 12 14 16
Number of Threads

101

102

103

Scaling

128 2048 16384

(a) CPU-Scalability of Dash. The ReLU and Sign functions are computed with 100% accuracy.

7 8 9 10 11 12 13 14
Dimension (power of 2)

0

5

10

15

Sp
ee

du
p

ReLU

7 8 9 10 11 12 13 14
Dimension (power of 2)

0

5

10

15

Sign

128 256 512 1024 2048
Dimension

0

25

50

75

Dense

64x64x3 128x128x3 256x256x3
Dimension

0

100

200

Conv2D

7 8 9 10 11 12 13 14
Dimension (power of 2)

0

2

4

6
Scaling

99.0% 100.0% Sign-Gadget Accuracy

(b) Speedup of Dash’s GPU against its CPU implementation.

7 8 9 10 11 12 13 14
Dimension (power of 2)

0

250

500

750

M
em

or
y

U
sa

ge
(M

B
) ReLU

7 8 9 10 11 12 13 14
Dimension (power of 2)

0

250

500

750

1000
Sign

128 256 512 1024 2048
Dimension

0

10

20

30

40
Dense

64x64x3 128x128x3256x256x3
Dimension

0

200

400
Conv2D

7 8 9 10 11 12 13 14
Dimension (power of 2)

0

200

400

600

800
Scaling

99.0% 100.0% Sign-Gadget Accuracy

(c) GPU memory usage after the GC and the garbled inputs are transferred to the device memory.

Figure 6: Microbenchmarks of Dash. Conv2D uses 16 filters of size 4x4 and a stride of 2.

6.2.1 Model training

We trained all models with PyTorch over 100 epochs and selected the final model based on
the minimal validation loss during the training. The models were trained on the MNIST
and the CIFAR-10 data set. The MNIST data set consists of 70.000 black and white
images of handwritten digits from zero to nine. 60.000 images serve as training data, and
10.000 images serve as test data. We excluded 5.000 images from the training data for
validation. Each image is represented by 28 × 28 integer pixel values from the range
[0,255]. The CIFAR-10 data set consists of 60.000 RGB-Images of size 32 × 32 with color
values in the range [0, 255] and ten classes. There are 50.000 training images and 10.000
test images, and we excluded 5.000 images from the training data set for validation.

6.2.2 Model architectures

Similar to Ball et al. [BCM+19], we evaluate several model architectures that have been
used for evaluation of previous DPI frameworks [MZ17, GDL+16, RRK18, LJLA17] (see
Table 3). In some models, Ball et al. replace ReLU activations with tanh activations
during training and those tanh with sign activations at inference time to maintain model
performance despite quantization. Thanks to our garbled scaling gadget and the ScaleQuant
mechanism, we do not need such replacements. Springenberg and Dosovitskiy et al.
[SDBR15] observed that replacing max-pooling with strided convolution in modern CNNs
leads to competitive or even better predictive power. Following their approach enables
us to heavily reduce the memory footprint of our garbled CNNs compared to gnnp since
garbling a single max(x, y) = x+ReLU(y−x) operation results in the same large ciphertext
overhead as garbling the ReLU function, while garbling the convolution is ciphertext-free.

438 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

Table 3: Model architectures. R: ReLU, (a): dense layer with a outputs, (a, b, c, d): 2d
convolution with a input-channel, b output-channel, filter size c and a stride of d.

ModelA: (128), R, (128), R, (10)
ModelB: (1, 5, 5, 1), R, (5, 5, 3, 3), R, (5, 10, 3, 1), R, (10, 10, 3, 3), R, (100), R, (10)
ModelC: (1, 5, 4, 2), R, (100), R, (10)
ModelD: (1, 16, 6, 2), R, (16, 16, 6, 2), R, (100), R, (10)
Modelf: (3, 32, 3, 1), R, (32, 32, 3, 1), R, (32, 32, 2, 2), (32, 64, 3, 1), R, (64, 64, 3, 1), R,

(64, 64, 2, 2), (64, 128, 3, 1), R, (128, 128, 3, 1), R, (10)
ModelF: (3, 64, 3, 1), R, (64, 64, 3, 1), R, (64, 64, 2, 2), (64, 64, 3, 1), R, (64, 64, 3, 1), R,

(64, 64, 2, 2), (64, 64, 3, 1), R, (64, 64, 1, 1), R, (64, 16, 1, 1), R, (10)

MODEL-A MODEL-B MODEL-C MODEL-D MODEL-F-SMALL MODEL-F
101

102

103

104

105

R
un

tim
e

(m
s)

Dash (GPU)
Dash (CPU)

GAZELLE
GNNP

MiniONN
SecureML

CryptoNets
DeepSecure

MUSE/SIMC

Figure 7: Dash’s online model runtime compared to previous DPI frameworks (data is not
available for all framework/models, e.g. because not all frameworks support all models).

MODEL-A to -D were trained on the MNIST and MODEL-f and -F on the CIFAR-10
dataset. During garbling of the Models A-F we use CPMs P8, P9, P9, P8, P7, P7, such that
there are no overflows in the GC during runs on the test sets. We used SimpleQunat for
MODEL-A to MODEL-D and ScaleQuant with l = 5 for MODEL-f and MODEL-F.

6.2.3 Model Performance

Figure 7 compares the online runtime of Dash to gnnp [BCM+19], MiniONN [LJLA17],
CryptoNets [CBL+18], SecureML [MZ17], Gazelle [JVC18], DeepSecure [RRK18],
Muse [LMSP21] and SIMC [CGOS22] (Muse and SIMC have the same online runtime).
Dash’s runtimes incorporate the theoretically determined communication overhead in
the worst case in a 1 GBit/s network under 100% protocol overhead (see Subsection 6.3).
Achieving malicious security compared to semi-honest security is typically accompanied by
a significant performance penalty. Dash is, besides gnnp, the only one of the given frame-
works that achieves full malicious security and still delivers the best runtime performance.

Compared to Dash, SecureML supports training. However, the evaluation of MODEL-
A shows that Dash is already over an order of magnitude faster in the case of small
fully-connected ANNs. DeepSecure is also based on an optimized GC implementation,
but in contrast to Dash and gnnp, it implements binary GCs. The results of MODEL-C
show the advantage of arithmetic GCs for inference: Dash is over two orders of magnitude
faster than DeepSecure. While MiniONN is significantly faster than CryptoNets, the
evaluation of MODEL-B, -C, and -F clearly shows the speed advantage of Dash.

Table 4 shows a direct performance comparison of Dash against gnnp and Gazelle.
Dash’s CPU and GPU implementation beat gnnp concerning all model architectures. In
the case of the small fully-connected MODEL-A, Dash is 2x faster on the CPU and 6x
faster on the GPU. For all other convolutional models, Dash achieves a 14- to over 100-
times speedup against gnnp. Compared to Gazelle, Dash’s GPU implementations are
always faster than Gazelle, except for MODEL-B. For the largest evaluated MODEL-F,
Dash is over two times faster than Gazelle, showing its good scalability.

Table 5 reports the accuracy of our garbled models compared to gnnp. Dash beats

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 439

0 20 40 60 80 100
Runtime in %

A
B
C
D

E-100
E-30

F-SMALL
F

M
od

el
CPU Evaluation

ReLU Conv2D Dense Rescale Sign

0 20 40 60 80 100
Runtime in %

GPU Evaluation

Figure 8: Runtime distribution over layer types and model architectures.

gnnp for each model. For the larger MODEL-f, the power of Dash’s ScaleQuant quanti-
zation becomes clear, Dash’s accuracy is almost 12% higher compared to gnnp.

Table 4: Comparison of online runtimes (in
ms). gnnp does not incur communication
overhead, Gazelle is not malicious security.

Model A B C D f F
CPU 27 132 46 169 10263 23959
GPU 10 32 16 42 1332 1443
gnnp 60 1520 210 3340 97000 -
Gazelle 30 30 50 329 - 3560

Table 5: Comparison of the achieved model
accuracy on the test-set in % using Dash
and gnnp.

Model A B C D f
Dash 97.76 96.73 98.10 98.84 85.67
gnnp 96.80 86.72 97.21 96.44 73.74

6.2.4 Runtime Distribution

Figure 8 shows what portion of the runtime Dash spends in which layer types. As expected,
GPU acceleration shifts the distribution such that the linear portions are minimized, and
the non-linear portions account for most of the runtime cost. For optimization, accelerating
the activation functions on the GPU even further would be particularly interesting.

For larger models (see F models), the ScaleQuant mechanism is needed to maintain
their predictive power. In this case, our garbled scaling dominates the runtime cost.
Currently, our scaling gadget only supports scaling with two because otherwise, our base
extension mechanism is not able to recover the lower residues. Since the F models use
ScaleQuant with l = 5 (rescaling by 2−5), the scaling gadget must be applied five times.
For further research, it would be interesting to look for ways to enable base extension for
residuals of larger CRT moduli to minimize the rescaling overhead.

6.3 Communication
We evaluate Dash’s online communication overhead in a theoretical model and assume the
worst case, where the input owner(s), the garbling device, the inference device, and the
result owner are separate parties that all communicate over a network. This way, we show
that Dash outperforms the given DPI schemes in all possible use cases. We incur costs
for communicating the plain inputs In, the garbled inputs gIn, the garbled outputs gOut,
and the plain outputs Out. We assume that all GC labels are compressed into 128-bit
for communication. Plain inputs use a 16-bit, and plain outputs a 64-bit data type. For
fairness, we assume a large protocol overhead of 100% regarding the communication.

Figure 9b compares Dash’s communication volume to MiniONN and Gazelle. Dash’s
online communication volume is constant for a constant CPM and input dimensions. For a

440 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

0 10 20 30 40
Runtime (ms)

A
B
C
D

M
od

el

Communication Computation

(a) Distribution of the online workload.

(b) Online communication volume (MB) of
Dash and Gazelle (single input).

Model A B C D f F
Dash 0.1 0.1 0.1 0.1 0.4 0.4
MiniONN 43.8 12.2 - 636.6 - 6226
Gazelle 0.5 0.5 2.1 22.5 296 -

Figure 9: Online Communication Volume.

CPM Pk, the volume of the garbled input is k · size(In) ·128 bits, and for the garbled output
k · size(Out) · 128 bits. Typical DPI approaches that combine different MPC techniques for
linear and non-linear layers require one communication round for each non-linear layer
[CL01, BOP06, OPB07, BFL+11, MZ17, LJLA17, RWT+18, MR18, MLS+20]. Frequent
communication slows down the computations because the inference device has to wait
for a response before computing the next layer. Dash requires only a single round of
communication between the garbling device and the inference device, regardless of the
depth of the ANN. These advantages can be seen in Figure 9a, which shows the distribution
of communication and computation over the entire runtime. The share of communication
work in the total runtime decreases with the model size from 15% for MODEL-A over 5%
for MODEL-D to less than 1% for MODEL-F.

7 Conclusion

We present a framework that offers ML inference with security against a malicious attacker
by adopting optimized arithmetic GCs. The introduction of LabelTensors enables Dash
to efficiently accelerate the inherent parallelism of ANNs with parallel hardware such as
multi-core CPUs and large, massively parallel GPUs. Compared to gnnp, leveraging a
TEE allows Dash to host inference applications with more than two input providers. With
a fixed input dimension, the emerging communication volume and the memory requirement
on the inference device remain constant regardless of the number of input providers.
Independent of the number of alternating linear and non-linear layers, Dash requires only
one round of communication between the garbling and the inference device. As a result,
Dash achieves state-of-the-art performance for all evaluated model architectures. Dash
can run existing models without retraining and does not require knowledge about GCs.

We exhibit a large feature comparison to many previous approaches and a thorough
performance evaluation based on both micro-benchmarks and real-life models to show that
Dash outperforms previous works both in regard to resource consumption (runtime and
communication) and feature set. This work provides a relevant step towards making secure
inference fast and easy to use, which will aid a broader adoption of proposed protection
mechanisms, resulting in making secure inference accessible to a wide public audience.

Acknowledgments

We thank the anonymous reviewers for their useful feedback. This work has been supported
by the BMBF through the project AnoMed.

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 441

References
[AHIV23] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. Ligero: lightweight sublinear arguments without a trusted setup.
Des. Codes Cryptogr., 91(11):3379–3424, 2023.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, pages 120–129. IEEE Computer Society, 2011.

[ASH+20] Jackson Abascal, Mohammad Hossein Faghihi Sereshgi, Carmit Hazay, Yuval
Ishai, and Muthuramakrishnan Venkitasubramaniam. Is the classical GMW
paradigm practical? the case of non-interactive actively secure 2pc. In CCS,
pages 1591–1605. ACM, 2020.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In IEEE Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society, 2018.

[BCD+20] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider,
and Hossein Yalame. MP2ML: a mixed-protocol machine learning framework
for private inference. In ARES, pages 14:1–14:10. ACM, 2020.

[BCM+19] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schi-
manski. Garbled neural networks are practical. IACR Cryptol. ePrint Arch.,
2019:338, 2019.

[BFL+11] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Privacy-preserving ECG classification with branching
programs and neural networks. IEEE Trans. Inf. Forensics Secur., 6(2):452–
468, 2011.

[BGJ+19] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. SANCTUARY: arming trustzone with user-space enclaves.
In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet Society,
2019.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.
Efficient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
478–492. IEEE Computer Society, 2013.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In Harriet Ortiz, editor, Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 503–513. ACM, 1990.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and
arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 565–577. ACM, 2016.

442 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

[BOP06] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A privacy-preserving
protocol for neural-network-based computation. In Sviatoslav Voloshynovskiy,
Jana Dittmann, and Jessica J. Fridrich, editors, Proceedings of the 8th workshop
on Multimedia & Security, MM&Sec 2006, Geneva, Switzerland, September
26-27, 2006, pages 146–151. ACM, 2006.

[CB19] Joseph I. Choi and Kevin R. B. Butler. Secure multiparty computation and
trusted hardware: Examining adoption challenges and opportunities. Secur.
Commun. Networks, 2019:1368905:1–1368905:28, 2019.

[CBL+18] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and
Li Fei-Fei. Faster cryptonets: Leveraging sparsity for real-world encrypted
inference. CoRR, abs/1811.09953, 2018.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol.
ePrint Arch., 2016:86, 2016.

[CGOS22] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash
Shah. SIMC: ML inference secure against malicious clients at semi-honest
cost. In Kevin R. B. Butler and Kurt Thomas, editors, 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022,
pages 1361–1378. USENIX Association, 2022.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages
199–203. Plenum Press, New York, 1982.

[CJM20] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic extrac-
tion of neural network models. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer
Science, pages 189–218. Springer, 2020.

[CL01] Yan-Cheng Chang and Chi-Jen Lu. Oblivious polynomial evaluation and
oblivious neural learning. In Colin Boyd, editor, Advances in Cryptology -
ASIACRYPT 2001, 7th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Gold Coast, Australia, December
9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science,
pages 369–384. Springer, 2001.

[CLD16] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016, pages 857–874. USENIX Association,
2016.

[EKR18] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic intro-
duction to secure multi-party computation. Found. Trends Priv. Secur.,
2(2-3):70–246, 2018.

[GAGN15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages 1737–1746. JMLR.org,
2015.

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 443

[GDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 201–210. JMLR.org, 2016.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multi-
party computation from fixed-key block ciphers. In 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020,
pages 825–841. IEEE, 2020.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16,
2015, pages 567–578. ACM, 2015.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity and a methodology of cryptographic protocol design
(extended abstract). In FOCS, pages 174–187. IEEE Computer Society, 1986.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure
two-party computation using garbled circuits. In 20th USENIX Security Sym-
posium, San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX
Association, 2011.

[HMSG13] Nathaniel Husted, Steven A. Myers, Abhi Shelat, and Paul Grubbs. GPU
and CPU parallelization of honest-but-curious secure two-party computation.
In Charles N. Payne Jr., editor, Annual Computer Security Applications
Conference, ACSAC ’13, New Orleans, LA, USA, December 9-13, 2013, pages
169–178. ACM, 2013.

[HP94] CY Hung and B Parhami. An approximate sign detection method for residue
numbers and its application to rns division. Computers & Mathematics with
Applications, 27(4):23–35, 1994.

[HSS+18] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. Chiron: Privacy-preserving machine learning as a service. CoRR,
abs/1803.05961, 2018.

[HZG+18] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin,
Michael Backes, and Mario Fritz. Mlcapsule: Guarded offline deployment of
machine learning as a service. CoRR, abs/1808.00590, 2018.

[Int21] Intel. Intel software guard extensions developer reference for linux* os, 2021.

[Jul78] Graham A. Jullien. Residue number scaling and other operations using ROM
arrays. IEEE Trans. Computers, 27(4):325–336, 1978.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A low latency framework for secure neural network inference.
In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pages 1651–1669. USENIX Association, 2018.

444 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

[Kap16] David Kaplan. AMD x86 memory encryption technologies. In USENIX,
Austin, TX, August 2016. USENIX Association.

[KRC+20] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 336–353. IEEE, 2020.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
XOR gates and applications. In Luca Aceto, Ivan Damgård, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II
- Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, volume 5126 of Lecture Notes in Computer
Science, pages 486–498. Springer, 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure com-
putation with malicious adversaries. In Tadayoshi Kohno, editor, Proceedings
of the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10,
2012, pages 285–300. USENIX Association, 2012.

[LJLA17] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network
predictions via minionn transformations. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 619–631. ACM,
2017.

[LLD+22] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. Design and verification of the arm confidential compute
architecture. In Marcos K. Aguilera and Hakim Weatherspoon, editors,
16th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pages 465–484. USENIX
Association, 2022.

[LLP+19] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. Occlumency:
Privacy-preserving remote deep-learning inference using SGX. In Stephen A.
Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis Kostakos, edi-
tors, The 25th Annual International Conference on Mobile Computing and
Networking, MobiCom 2019, Los Cabos, Mexico, October 21-25, 2019, pages
46:1–46:17. ACM, 2019.

[LMSP21] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada
Popa. Muse: Secure inference resilient to malicious clients. In Michael Bailey
and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 2201–2218. USENIX Association,
2021.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Moni Naor, editor,
Advances in Cryptology - EUROCRYPT 2007, 26th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Barcelona, Spain, May 20-24, 2007, Proceedings, volume 4515 of Lecture Notes
in Computer Science, pages 52–78. Springer, 2007.

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 445

[LP15] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. J. Cryptol., 28(2):312–
350, 2015.

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-
party computation efficiently with security against malicious adversaries. In
Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, Security and
Cryptography for Networks, 6th International Conference, SCN 2008, Amalfi,
Italy, September 10-12, 2008. Proceedings, volume 5229 of Lecture Notes in
Computer Science, pages 2–20. Springer, 2008.

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions
and software model for isolated execution. In Ruby B. Lee and Weidong Shi,
editors, HASP 2013, The Second Workshop on Hardware and Architectural
Support for Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013, page 10.
ACM, 2013.

[MLS+20] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng,
and Raluca Ada Popa. Delphi: A cryptographic inference service for neural
networks. In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, pages
2505–2522. USENIX Association, 2020.

[MPS15] T Malkin, V Pastro, and A Shelat. The whole is greater than the sum of
its parts: Linear garbling and applications. In Workshop talk at Securing
Computation Workshop in Berkley, 2015.

[MR18] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for
machine learning. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 35–52. ACM, 2018.

[MTH22] Fan Mo, Zahra Tarkhani, and Hamed Haddadi. Sok: Machine learning with
confidential computing. CoRR, abs/2208.10134, 2022.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 19–38.
IEEE Computer Society, 2017.

[NC21] Lucien K. L. Ng and Sherman S. M. Chow. Gforce: Gpu-friendly oblivious
and rapid neural network inference. In Michael Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 2147–2164. USENIX Association, 2021.

[NC23] Lucien K. L. Ng and Sherman S. M. Chow. Sok: Cryptographic neural-network
computation. In 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023, pages 497–514. IEEE, 2023.

[NCW+21] Lucien K. L. Ng, Sherman S. M. Chow, Anna P. Y. Woo, Donald P. H. Wong,
and Yongjun Zhao. Goten: Gpu-outsourcing trusted execution of neural
network training. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in

446 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages
14876–14883. AAAI Press, 2021.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-
shank Burra. A new approach to practical active-secure two-party computation.
In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 681–
700. Springer, 2012.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions
and mechanism design. In Stuart I. Feldman and Michael P. Wellman, editors,
Proceedings of the First ACM Conference on Electronic Commerce (EC-99),
Denver, CO, USA, November 3-5, 1999, pages 129–139. ACM, 1999.

[OPB07] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious neural network
computing via homomorphic encryption. EURASIP J. Inf. Secur., 2007:1–11,
2007.

[OSF+16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine
learning on trusted processors. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016, pages 619–636. USENIX Association, 2016.

[PMG+17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks against
machine learning. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,
and Xun Yi, editors, Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, April 2-6, 2017, pages 506–519. ACM, 2017.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR
Cryptol. ePrint Arch., 2005:187, 2005.

[RRK18] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure:
scalable provably-secure deep learning. In Proceedings of the 55th Annual
Design Automation Conference, DAC 2018, San Francisco, CA, USA, June
24-29, 2018, pages 2:1–2:6. ACM, 2018.

[RSC+19] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E.
Lauter, and Farinaz Koushanfar. XONN: xnor-based oblivious deep neural
network inference. In Nadia Heninger and Patrick Traynor, editors, 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019, pages 1501–1518. USENIX Association, 2019.

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning applications. In Jong
Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo
Kim, editors, Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, AsiaCCS 2018, Incheon, Republic of Korea, June
04-08, 2018, pages 707–721. ACM, 2018.

[SDBR15] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for simplicity: The all convolutional net. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop
Track Proceedings, 2015.

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 447

[SMF21] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. Demystify-
ing attestation in intel trust domain extensions via formal verification. IEEE
Access, 9:83067–83079, 2021.

[SS08] Ahmad-Reza Sadeghi and Thomas Schneider. Generalized universal circuits
for secure evaluation of private functions with application to data classifica-
tion. In Pil Joong Lee and Jung Hee Cheon, editors, Information Security
and Cryptology - ICISC 2008, 11th International Conference, Seoul, Korea,
December 3-5, 2008, Revised Selected Papers, volume 5461 of Lecture Notes in
Computer Science, pages 336–353. Springer, 2008.

[TB19] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[TGS+18] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ra-
machandran Ramjee. Privado: Practical and secure DNN inference. CoRR,
abs/1810.00602, 2018.

[TKTW21] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast
privacy-preserving machine learning on the GPU. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021,
pages 1021–1038. IEEE, 2021.

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. Stealing machine learning models via prediction apis. In Thorsten
Holz and Stefan Savage, editors, 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016, pages 601–618. USENIX
Association, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling
and efficient maliciously secure two-party computation. In CCS, pages 21–37.
ACM, 2017.

[WWP22] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A GPU
platform for secure computation. In USENIX Security Symposium, pages
827–844. USENIX Association, 2022.

[XBF+14] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin E.
Lauter, and Michael Naehrig. Crypto-nets: Neural networks over encrypted
data. CoRR, abs/1412.6181, 2014.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In CCS, pages 2986–3001. ACM, 2021.

[ZHC+20] Fan Zhang, Warren He, Raymond Cheng, Jernej Kos, Nicholas Hynes, Noah M.
Johnson, Ari Juels, Andrew Miller, and Dawn Song. The ekiden platform
for confidentiality-preserving, trustworthy, and performant smart contracts.
IEEE Secur. Priv., 18(3):17–27, 2020.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,

448 Dash: Accelerating Private Inference with Arithmetic Garbled Circuits

Part II, volume 9057 of Lecture Notes in Computer Science, pages 220–250.
Springer, 2015.

Appendix
Half-Gate Generalization Ball et al. [BCM+19] introduced a mixed-modulus multipli-
cation gate. We denote the labels on the input-wires x, y with semantic a, b by lax, lby and
the point-and-permute value of l0y by r. Hence, the point-and-permute value of lby is given
by (b+ r) mod p. The key idea is a reformulation of the multiplication into two gadgets
a · (b+ r) (the evaluator half gate) and a · r (the garbler half gate). Since r is the color
value of the base label of the y-wire, the garbler already knows r at garbling time, and the
evaluator knows b+ r at evaluation time.

The garbler selects a random base label l0u for the garbler HG and performs ENl0x+aR(l0u+
arR) for all a ∈ Zp. For the evaluator HG, the garbler selects a random base label l0v and
performs ENl0y+bR(l0v − (b+ r)l0x) for all b ∈ Zp. The evaluator knows the labels of both
inputs and decrypts two of the above ciphers accordingly. Knowing b+ r and l0x + aR, he
can choose l0v − (b+ r)l0x + (b+ r)(l0x + aR) = l0v + (b+ r)aR and the product-output is
l0v + (b+ r)aR− (l0u + arR) = l0v − l0u + abR (considering l0v − l0u as the base label).

Mixed-Modulus Half-Gate Ball et al. [BCM+19] show how to reduce the mixed modulus
multiplication cost to roughly q + p + 1 ciphertexts. To encrypt the evaluator HG, the
garbler uses an input label l0y + bR′ with modulus q. Instead of p ciphertexts, the evaluator
HG results in q ciphertexts. Since b ∈ Zq, the corresponding color value is also from Zq.
Now, we have to preserve the known input b+ r ∈ Zp of the evaluator HG. Therefore, Ball
et al. [BCM+19] propose to leverage a single projection gate of q very short ciphertexts,
encrypting b+ r for all possible b. For the multiplication ReLU(a) = sgn(a) · a, we can
pack all of these ciphertexts into 128 bits. Garbling the evaluator HG for all b ∈ Zq results
in the ciphertexts ENl0y+bR′(l0v − (r + b) · l0x) and ENl0y+bR′(r + b).

Approximated Garbled Sign The garbled sign function sgn : ZPk
→ {0, 1} of Ball et al.

[BCM+19] expects ZPk
-values and interprets the first half of the ring as negative and the

other half as positive numbers, i.e., sgn(x) = 0 if x < Pk/2 and sgn(x) = 1 if x ≥ Pk/2.
The concept2 is based on the CRT, which describes the reconstruction of the value

x ∈ Pk from its residue representation JxKPk
= (x1, . . . , xk), where xi = x mod pi: x ≡∑k

i=1 A
−1
i ·Ai · xi mod Pk, with Ai = Pk

pi
≡

∑k
i=1 αi · xi mod Pk. Hence, the sign function

can be computed just regarding the fractional part of the last summand by computing
αixi/Pk and rounding it to 1/M for some M . This approximation can be represented as
Zm-wire and the the error of a k term sum is limited by k/2M . Hence, for M > kPk/2,
the result is correct. In fact, this Zm-wire, this is represented as a bundle of wires using a
mixed-radix representation (see [BCM+19]). In other situations, correctness is not needed,
and M is a trade-off parameter between precision and garbling cost.

Garbled Mixed-Radix Addition For use in the approximated garbled sign function,
Ball et al. [BCM+19] introduced a fast mixed-radix addition. Consider the summation of
k = 3 values represented in mixed-radix representation ZDn

∼= (Zd1× . . .×Zdn
) (associated

with the integers {0, . . . , Dn − 1 = (
∏
i di)− 1} and d1 being the most significant digit).

The operation first computes s = x + y + z + cin
i , where x, y, z are the values of the

Zdi -wires and cin
i is the carry-input. Then, x, y, z, cin

i are cast using four projection gates

2This general approach also appears in earlier works like [HP94].

Jonas Sander, Sebastian Berndt, Ida Bruhns and Thomas Eisenbarth 449

to Z3di+cmax
i
−1 and all input values are added mod 3di + cmax

i − 1. Finally, the carry-out
cout = bx+y+z+cin

i

di
c is computed using an unary gate.

	Introduction
	Related Work
	Preliminaries
	Neural Networks
	Garbled Circuits
	Garbled Circuit Optimizations
	Arithmetic Garbled Circuits
	Trusted Execution Environments

	Design of Dash
	Quantization and Encoding
	The Scaling Operation
	System-level Architecture
	Feature Set in Comparison
	Use Cases
	Security Objective
	Security of Dash

	Implementation
	Dash-as-a-Framework
	LabelTensors

	Evaluation
	Microbenchmarks
	Model Benchmarks
	Communication

	Conclusion

