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Abstract. Hardware implementations of cryptographic algorithms are susceptible
to power analysis attacks, allowing attackers to break the otherwise strong security
guarantees. A theoretically sound countermeasure against such attacks is masking,
where all key- and data-dependent intermediate values in the computation are split
into so-called shares, requiring an attacker to learn all of them before recovering the
secret key. Masking a cryptographic hardware design against power analysis attacks
incurs large area and latency overheads due to their nonlinear components, especially
when implemented using composable masking schemes.
These overheads disproportionately affect ciphers with highly nonlinear monolithic
S-Boxes like the Advanced Encryption Standard (AES). The masking of the AES
S-Box is well studied, and most implementations use Canright’s F28 inverter design
that decomposes operations in a larger field into a combination of multiplications,
additions and inversions in a smaller field. While remarkable, Canright’s inverter
design has a sub-optimal multiplicative depth, and can thus not take full advantage
of recent developments in low-latency composable masking schemes.
In this paper, we present a F28 inverter that achieves the optimal multiplicative
depth of three, and use it to construct a more efficient trivially composable masked
implementation of the AES S-Box. Moreover, we present HPC3.1, a better low-latency
multiplication gadget that works in all finite fields Fpn , and a randomness reuse
strategy for both HPC1 and HPC3.1 gadgets that preserves side-channel security.
Orthogonally, we also propose an improved bit-level implementation of the F24 inverter
for more efficient masked S-Box designs based on Canright’s original F28 inverter.
We develop, functionally test, and formally verify the trivially composable side-channel
security of all masked AES S-Box designs. Our evaluation shows that the designs
outperform or match the state-of-the-art in terms of latency, randomness use and
area cost.
Keywords: AES, Masking, PINI, Low-latency, Mask Reuse

1 Introduction
All electronic devices consume power while performing computations, and their power
consumption depends on the data that is being processed. It turns out that the side-
channel information revealed through power consumption is sufficient to mount powerful
attacks against otherwise secure cryptographic algorithms. Differential power analysis
(DPA) [KJJ99] and correlation power analysis (CPA) [BCO04] are examples of such attacks,
where an attacker observes the power consumption for different controllable inputs, creates
predictions for the power consumption of secret key candidates, and finally scores the key
candidates based on how well the prediction correlates with real power measurements.

Masking is an algorithmic countermeasure against both DPA and CPA attacks, that
transforms the original computation so that every secret, data and intermediate value is
split into several random and statistically independent components called shares. The
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purpose of this change is clear: make it so that an attacker needs to combine information
about all shares in order to recover the secret, forcing them to perform either multivariate
correlation analysis or correlate on higher-order statistical moments, hopefully achieving a
security gain exponential in the number of shares [CJRR99].

There have been several proposals for masking schemes that achieve security against
DPA and CPA attacks. These include threshold implementations (TI) [NRS11], domain-
oriented masking (DOM) [GMK16], the consolidated masking scheme (CMS) [RBN+15],
generic low-latency masking (GLLM) [GIB18], and more recently hardware-private circuits
(HPC) [CGLS21]. In general, these masking approaches significantly increase the size
of the circuit, introduce additional latency to protect against glitches, and require fresh
uniformly random values when masking nonlinear functions.

This masking overhead is particularly noticeable in the highly nonlinear S-Box of
AES [DR98]. It has long since been the prime target for various masked hardware de-
signs [MPL+11, CBR+15, BGN+15, CRB+16, GC17, UHA17, GIB18, SGMT18, GSM+19,
SBHM20, ADN+22]. Most of these masked implementations are, either directly or indi-
rectly, based on Canright’s F28 inverter [Can05], which recursively implements operations in
a larger field from operations in a smaller component field, all the way to F2 where additions,
multiplications and inverses become Xor gates, And gates and identity operations.

In this paper, we present a novel approach to the problem of efficiently masking the
AES S-Box. Our goal is to design a masked AES S-Box which fulfills trivial composability
through probe-isolating non-interference (PINI) and has low latency, chip area, and
randomness requirements. We achieve this objective through several contributions:

(1) An improved F28 inverter design. We present the first small F28 inverter design
that achieves the optimal multiplicative depth of three instead of four, enabling
efficient HPC masking of the AES S-Box with three clock cycles of latency.

(2) A better masked multiplier in Fq . We present HPC3.1, a better masked multi-
plication gadget that works in arbitrary fields Fq and requires less operations than
its predecessor, while keeping its low latency and composability properties.

(3) A sound randomness reuse strategy. We present a randomness reuse strategy
that enables randomness sharing between gadgets while preserving secure compos-
ability. This significantly reduces the randomness cost of masked AES S-Boxes.

(4) Better masked AES S-Box designs. We present several trivially composable
masked AES S-Box designs that match or outperform the state of the art in all
relevant metrics. This includes the first ever trivially composable design that achieves
a latency of three clock cycles at arbitrary protection orders, as well as the most
efficient trivially composable masked AES S-Box based on Canright’s F28 inverter.

Outline. This paper follows a natural structure, where Section 2 presents background
on side-channel formalism, PINI theory, HPC gadgets, and Canright’s F28 inverter, Section 3
presents our new F28 inverter, followed by Sections 4 and 5 which introduce the HPC3.1
gadget and show how randomness can be reused across gadgets. Afterwards, Section 6
presents candidate masked F28 inverter designs and Section 7 evaluates masked AES
S-Boxes based on said designs, comparing them to related work. Section 8 concludes the
paper. Appendices A and B show an additional gadget and unmasked bit-level results.

2 Background
In this section, we briefly revisit the background and notation relating to formal models of
power side-channel attacks. Afterwards, we present probe-isolating non-interference as a
road to composable side-channel security and present two gadgets that achieve this strict
security notion. Finally, we give an overview of Canright’s F28 decomposition employed in
efficient hardware implementations of the AES S-Box.
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2.1 Power Side Channels and Masking
The power consumption of real-world devices is all but simple, and many papers have
looked at ways to define a formal framework for attacks like DPA and CPA that exploit this
side channel. One such model is the so-called probing model [ISW03], where an attacker
can pick up to d intermediate values in a computation and directly read their values. The
security order d ≥ 1 roughly corresponds to the DPA and CPA attack order, i.e., either
the statistical moment of power consumption correlated in the attacks or the number of
timepoints combined in a multivariate attack. Either way, we say that a computation is d
probing secure if an attacker able to repeatedly probe (read) any d intermediate values in
the computation cannot recover any information about the secrets.

Since the original introduction of the probing model, follow-up work has determined
that the definition of intermediate values in a hardware execution is not straightforward.
This is primarily due to glitches, i.e., transient computations caused by value changes
and signal timings that influence the power consumption but not the synchronous state
of a hardware circuit. Adding these transient intermediate computations to the probing
model yields the so-called glitch-extended probing model [FGP+18]. Take for example the
computation C = A+B. In hardware, depending on the exact timing, the signal C may
first take on the value of either A or B before the other “arrives” and C stabilizes to the
actual value A+B. One could say that an adversary placing a probe on C observes the set
of values ρ (C) = {A,B} in the worst case. These glitch extended probes are very powerful
and give an attacker probing C access to all values that drive it, i.e., the set of all registers
and inputs at the base of the computational cone of C. Registers stop the propagation of
glitches because they only change their value when the clock ticks, e.g., on a positive clock
edge. In the rest of this paper, we are always considering glitch-extended probes.

Intuitively, an attacker able to read any value in the computation is able to break
straightforward cryptographic algorithm implementations, so more sophisticated imple-
mentation countermeasures are necessary. One such countermeasure is masking. Masking
is a secret sharing technique where all inputs, intermediates and outputs of a computation
are split into sets of values called shares, with the idea that an attacker needs knowledge
of all shares to recover the respective original value. Let X∗ = {X0, . . . , Xn−1} be the
set of all original computation inputs and Y∗ = {Y0, . . . , Ym−1} be the set of all original
computation outputs. In additive masking over a finite field Fq , every secret input Xk

is split into a set of shares Xk,∗ = {Xk,0, . . . , Xk,d}, such that Xk =
∑d

i=0 Xk,i. The
shares Xk,i are supposed to be independent and uniformly random so that the knowledge
of up to d shares does not reveal any information about Xk, i.e., without knowledge
of the last missing share, each original value of Xk is equally likely. We additionally
use the notation X∗,i = {X0,i, . . . , Xn−1,i} for the ith share of each masked input, and
X∗,∗ =

⋃n−1
k=0 Xk,∗ =

⋃d
i=0 X∗,i for the set of all shares of all inputs. Similarly, the

original computation outputs Yk are also split into the shares Yk,∗ = {Yk,0, . . . , Yk,d},
and we write Y∗,i = {Y0,i, . . . , Ym−1,i} for the ith share of each masked output, and
Y∗,∗ =

⋃m−1
k=0 Yk,∗ =

⋃d
i=0 Y∗,i for all shares of all masked outputs. When adapting a

computation to a masked computation, it is often necessary to sample new uniformly
random values on the fly to reshare sharings of intermediate variables or blind sharings
during certain operations. Here, we think of these uniform random values as additional
inputs R to the masked computation. The original computation is adapted to these shared
signals. For simplicity, we write T for the set of all intermediate values of the masked
computation. For the probing model, these intermediate computations are a special kind
of output that an attacker can get access to, and Definition 1 formalizes this intuition.

Definition 1 (Masked Computation). Amasked computation is a function ψ : 〈X∗,∗,R〉 7→
〈Y∗,∗,T〉 mapping a set X∗,∗ of n shared inputs X∗ and a set R of uniformly random
values to the set Y∗,∗ of m shared output values Y∗ and a set T of intermediate values.
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Algorithm 1: Generic multiplication gadget HPC1 [CGLS21]
Input : Sharing 〈A0, . . . , Ad〉 ∈ Fd+1

q of A ∈ Fq ,
sharing 〈B0, . . . , Bd〉 ∈ Fd+1

q of B ∈ Fq ,
sharing 〈R0, . . . , Rd〉 ∈ Fd+1

q of 0 ∈ Fq ,
masks 〈Pi,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q

Output : Sharing 〈C0, . . . , Cd〉 ∈ Fd+1
q of C = A ·B

1 for i from 0 to d do
2 B′i ← Reg (Bi +Ri); // Refresh sharing of B
3 for i from 0 to d do
4 Vi,i ← Ai ·B′i; // Same-domain terms
5 for j from i+ 1 to d do
6 Vi,j ← Pi,j +Ai ·B′j ; // Cross-domain terms
7 Vj,i ← −Pi,j +Aj ·B′i; // Cross-domain terms
8 Ci =

∑d
j=0 Reg (Vi,j);

9 return 〈C0, . . . , Cd〉;

2.2 Probe-Isolating Non-Interference
While probing security gives a good reflection of security against DPA and CPA attacks,
it is a monolithic property and does not compose in general. One can have two probing
secure computations that, when put together, suddenly become insecure. For this reason, a
lot of research went into establishing composable security definitions that imply d-probing
security, e.g., strong non-interference (SNI) [BBD+16, BBP+16]. In the following, we give
an overview of d-probe-isolating non-interference (d-PINI) [CS20, CGLS21], which is a
property that allows for trivial composition of small masked d-PINI computations called
gadgets into larger masked d-PINI computations.

Like other composable security notions for masked implementations, PINI builds on
the concept of probe simulations. That is, proving a computation is d-PINI involves
proving that the distribution witnessed by an attacker probing a set of at most d probes
on intermediate values and output share domains can be simulated while only knowing a
set of d input share domains. In the following, we give a definition of simulation and PINI
based on conditional probability distributions [KSM20] instead of the more traditional
exposition that uses a randomized simulation algorithm [CS20].

Definition 2 (Simulation). Let A and B be sets of random variables and let B0 ⊆ B
and B1 = B \B0 partition B. We say that B0 perfectly simulates the observations of A
under B if and only if

∀a,b0,b1 : Pr [A = a | B0 = b0] = Pr [A = a | B0 = b0,B1 = b1] . (1)

Definition 3 (Probe-isolating Non-interference (PINI) [KSM20]). Let ψ : 〈X∗,∗,R〉 7→
〈Y∗,∗,T〉 be a masked computation. For a set of indices I, let X∗,I =

⋃
i∈I X∗,i be a set

of input shares with indices I. The masked computation ψ is d-PINI if for all output share
domain probes Qout = {ρ (Yk,i) | k ∈ [0,m) , i ∈ I} and internal probes Qint ⊆ T∪R∪X∗,∗,
with |I|+ |Qint| ≤ d, there exists a set of indices I ′, with |I ′| ≤ |I|+ |Qint| and I ′ ⊇ I, so
that Qout ∪Qint is perfectly simulated by X∗,I′ under X∗,∗.

Cassiers et al. [CGLS21] have adapted the d-PINI security notion to the glitch-extended
probing model and presented the first two hardware private circuit multiplication gadgets
fulfilling the glitch-extended d-PINI property and named them HPC1 and HPC2. The
HPC1 gadget is shown in Algorithm 1, and represents an adapted version of the DOM
gadget [GMK17] where one of the inputs is reshared. Here, input R represents a sharing
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Algorithm 2: F2 multiplication gadget HPC3 [KM22]
Input : Sharing 〈A0, . . . , Ad〉 ∈ Fd+1

2 of A ∈ F2 ,
sharing 〈B0, . . . , Bd〉 ∈ Fd+1

2 of B ∈ F2 ,
masks 〈Ri,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

2 ,
masks 〈Pi,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

2
Output : Sharing 〈C0, . . . , Cd〉 ∈ Fd+1

2 of C = A ·B
1 for i from 0 to d− 1 do
2 for j from i+ 1 to d do
3 Rj,i ← Ri,j , Pj,i ← Pi,j ;
4 for i from 0 to d do
5 Ui,i ← Reg (Ai ∧Bi);
6 for j from 0 to d with j 6= i do
7 Vi,j ← Ri,j ⊕Bj ; Wi,j ← Pi,j ⊕ ¬Ai ∧Ri,j ;
8 Ui,j ← Reg (Ai) ∧ Reg (Vi,j)⊕ Reg (Wi,j);
9 Ci =

⊕d
j=0 Ui,j ;

10 return 〈C0, . . . , Cd〉;

of 0 ∈ Fq that is used to reshare B into B′. Using B′ instead of B in the rest of the
gadget makes all internal probes on Vi,j independent of B, even in the presence of glitches,
ensuring that Ai simulates Vi,j under A∪B. However, this comes at the cost of adding an
additional clock cycle of latency for the output compared to input sharing B, ultimately
leading to an asymmetric output latency of one clock cycle compared to A and two clock
cycles compared to B. The HPC1 gadget has a randomness cost of d (d+ 1) /2 + r (d) field
elements in Fq , where r (d) is the number of random bits needed to create the sharing R of
0 ∈ F2 , e.g., r (1) = 1, r (2) = 2, r (3) = 4, r (4) = 5 as shown by Cassiers et al. [CGLS21].

The HPC2 gadget is a straightforward adaptation of the PINI1 gadget [CS20]. It uses
the so-called multiplication trick to ensure correctness and the d-PINI property, which
limits it to only work in F2 unlike HPC1. However, it does achieve the same latency
characteristics while requiring only d (d+ 1) /2 random bits, making it an attractive
alternative for masked bit-level computations.

A recent paper by Knichel and Moradi [KM22] proposes the low-latency HPC3 gadget
show in Algorithm 2. It performs a d-PINI secure masked multiplication in F2 and only
requires a single register stage, i.e., a latency of one clock cycle compared to both input
sharings. This is a significant improvement over HPC1 and HPC2 but comes at the
cost of an increased randomness requirement of d (d+ 1) random bits. These additional
random bits are necessary for the blind-then-correct approach used in HPC3, where Bj is
blinded with Ri,j to make the multiplication Ai∧ (Bj ⊕Ri,j) independent of the sharing B.
Subsequently, the byproduct term Ai ∧Ri,j must be removed through cancellation, which
requires blinding it with Pi,j and adding it to the result of the previous multiplication.

2.3 Normal Basis Field Decomposition of F28

The AES S-Box is the part of AES providing confusion, and is defined as a bijective
function with 8-bit inputs and outputs. It consists of an inversion in F28 followed by an
affine transformation. While the affine transformation is easy to implement in hardware,
the F28 inversion is a highly nonlinear function, where all individual output bits have an
algebraic degree of seven. In the following, we give an overview over the mathematical
trickery enabling efficient F28 inversion, as presented by Canright [Can05].

It turns out that it is possible to represent an element of F22n and all F22n field
operations using two elements of F2n and F2n field operations. In the following exposition,
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we use uppercase latin for elements of F28 , uppercase greek for elements of F24 , lowercase
greek for elements of F22 and lowercase latin for elements of F2 .

A general element G of F28 can be represented as G = Γ1Y
16 + Γ0Y where Y 16 and Y

are the roots of the irreducible polynomial q′(y) = y2 + Πy + Σ, with Π = Y 16 + Y and
Σ = Y 16Y . Similarly, an element Γ of F24 is represented as Γ = γ1Z

4 +γ0Z using the roots
Z4 and Z of the irreducible polynomial q′′(z) = z2 +πz+σ, with π = Z4 +Z and σ = Z4Z.
Finally, an element γ of F22 is represented as γ = g1W

2 + g0W using the roots W 2 and W
of the only irreducible quadratic F2 polynomial q′′′(w) = w2 +w+1, with bothW 2 +W = 1
and W 2W = 1. This decomposition allows for efficient implementation of multiplications
and inversions in larger finite fields using simple operations in its component fields. For
example, the multiplication of two F28 elements G = Γ1Y

16 + Γ0Y and F = Φ1Y
16 + Φ0Y

breaks down to addition, multiplication and scaling by constants in F24 where
GF =

(
Γ1Y

16 + Γ0Y
) (

Φ1Y
16 + Φ0Y

)
= Λ1Y

16 + Λ0Y = L,

with
Λ1 = Γ1Φ1Π + (Γ1 + Γ0) (Φ1 + Φ0) ΣΠ−1

Λ0 = Γ0Φ0Π + (Γ1 + Γ0) (Φ1 + Φ0) ΣΠ−1 .
(2)

The same is true for F28 inversions L = G−1, where

G−1 =
(
Γ1Y

16 + Γ0Y
)−1 = Λ1Y

16 + Λ0Y = L,

with
Λ1 = Γ0

(
Γ1Γ0Π2 + (Γ1 + Γ0)2 Σ

)−1

Λ0 = Γ1

(
Γ1Γ0Π2 + (Γ1 + Γ0)2 Σ

)−1 .
(3)

Multiplication and inversion in F24 follows the same pattern as in F28 . Here, the basis
〈Z4, Z〉 is used, and all F28 and F24 symbols G, F , L, Γi, Φi, Λi, Π, and Σ are substituted
with their respective F24 and F22 counterparts Γ, Φ, Λ, γi, φi, λi, π, and σ:

ΓΦ =
(
γ1Z

4 + γ0Z
) (
φ1Z

4 + φ0Z
)

= λ1Z
4 + λ0Z = Λ,

with
λ1 = γ1φ1π + (γ1 + γ0) (φ1 + φ0)σπ−1

λ0 = γ0φ0π + (γ1 + γ0) (φ1 + φ0)σπ−1 , and
(4)

Γ−1 =
(
γ1Z

4 + γ0Z
)−1 = λ1Z

4 + λ0Z = Λ,

with
λ1 = γ0

(
γ1γ0π

2 + (γ1 + γ0)2σ
)−1

λ0 = γ1
(
γ1γ0π

2 + (γ1 + γ0)2σ
)−1 .

(5)

Similarly, multiplication and inversion in F22 also follow the same structure with the
appropriate basis 〈W 2,W 〉. Here, the symbols G, F , L, Γi, Φi, Λi, Π, and Σ are replaced
by their appropriate F22 and F2 counterparts γ, φ, λ, gi, fi, li, p = 1, and s = 1. Moreover,
most of the terms in the F22 inversion cancel out, yielding a simple swap of the two
component F2 elements:

γφ =
(
g1W

2 + g0W
) (
f1W

2 + f0W
)

= l1W
2 + l0W = λ,

with
l1 = g1f1 + (g1 + g0) (f1 + f0)
l0 = g0f0 + (g1 + g0) (f1 + f0)

, and
(6)

γ−1 = (g1W
2 + g0W )−1 = g0W

2 + g1W. (7)

This “free” F22 inversion in the normal basis representation is one of the reasons for
preferring it over the more commonplace polynomial basis representation when constructing
hardware circuits implementing the AES S-Box.

Figure 1 gives a structural overview of Canright’s F28 inversion. The only nonlinear
operations are the three F24 multiplications and the single F24 inversion. Addition in F24 ,
scaling by F24 constants and squaring of F24 elements are linear operations.
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Λ1

Λ0

Γ0

Γ1
#2

#−1

⊗Σ

⊗Π2

Figure 1: Structure of the F28 inversion outlined in equation (3). All signals are F24

elements and all operations are in F24 . Here, ⊗ is multiplication, ⊕ is addition, #2 and
#−1 are squaring and inversion, and ⊗_ scales by the given constant.

3 A Shallower F28 Inversion
The F28 inversion, interpreted as a polynomial over F2 has an algebraic degree of
deg

(
G−1) = 7. Therefore, it must be possible to implement it with a multiplicative

depth of at least dep
(
G−1) ≥ ⌈log2

(
deg

(
G−1))⌉ = 3. An example of a (bad) implemen-

tation that achieves dep
(
G−1) = 3 is its algebraic normal form where each monomial is

implemented as a balanced multiplication tree. The construction given by Canright [Can05]
and shown in Figure 1 achieves a multiplicative depth of dep

(
G−1) ≥ 4. This can be

computed from the optimal multiplicative depths of the functions used in its computation.
Here, the F24 multiplication ΓΦ has degree deg (ΓΦ) = 2 and thus optimal multiplicative
depth of dep (ΓΦ) ≥ 1, whereas the F24 inversion Γ−1 has algebraic degree deg

(
Γ−1) = 3

and thus an optimal multiplicative depth of dep
(
Γ−1) ≥ 2. All other functions are linear,

and thus have a degree of deg (·) = 1 and multiplicative depth dep (·) = 0.
In the following, we modify the structure of the F28 inversion to achieve the optimal

multiplicative depth of dep
(
G−1) = 3 without significantly increasing the size of the

computation or number of field multiplications. Starting from the structure shown in
Figure 1, we can perform a cut in the computation graph such that the inversion in F24

and the two final F24 multiplications are on the right side, and everything else is on the left
side of the cut. We observe that the computation of an inverse, followed by a multiplication
has algebraic degree deg

(
Γ−1Φ

)
= 4, but is implemented with a multiplicative depth

dep
(
Γ−1Φ

)
= max

(
dep

(
Γ−1) ,dep (Φ)

)
+ 1 = max (2, 0) + 1 = 3, (8)

which is sub-optimal as dep
(
Γ−1Φ

)
≥
⌈
log2

(
deg

(
Γ−1Φ

))⌉
= 2.

Let Γ = γ1Z
4 + γ0Z and Φ = φ1Z

4 + φ0Z be elements of F24 , and let Γ−1 = Λ =
λ1Z

4 +λ0Z be the inverse of Γ with λ1 = γ0θ, λ0 = γ1θ and θ =
(
γ1γ0π

2 + (γ1 + γ0)2σ
)−1

as in equation (5). The term Γ−1Φ can then be expressed as

Γ−1Φ = ΛΦ = (λ1Z
4 + λ0Z)(φ1Z

4 + φ0Z) =
= λ1φ1πZ

4 + λ0φ0πZ + (λ1 + λ0)(φ1 + φ0)σπ−1(Z4 + Z) =
= γ0θφ1πZ

4 + γ1θφ0πZ + (γ0θ + γ1θ)(φ1 + φ0)σπ−1(Z4 + Z) =
= θ

(
γ0φ1πZ

4 + γ1φ0πZ + (γ0 + γ1)(φ1 + φ0)σπ−1(Z4 + Z)
)
.

(9)

After factoring out the common term θ, we have balanced the computation in terms
of multiplicative depth. Here, dep (θ) = 1 because the inverse in F22 is linear and a F22

multiplication has a depth of one, i.e., dep (γ1γ0) = 1. Similarly, the term multiplied
with θ has multiplicative depth dep (γ0φ1) = dep (γ1φ0) = dep ((γ0 + γ1)(φ1 + φ0)) = 1.
Furthermore, it is possible to contextualize the obtained result in terms of F24 multiplica-
tions. For example, the terms multiplied with θ represent a F24 multiplication between
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γ0

γ1 ⊗σπ

λ0

λ1
#2

#2

(a) Structure of Θ (·)

γ0

γ1

ϕ0

ϕ1

λ0

λ1⊗π

⊗π

(b) Structure of �

Figure 2: Structure of the Θ(·) and � operations. Signals and operations are in F22 , where
⊗ is multiplication, ⊕ is addition, #2 is squaring and ⊗_ scales by the given constant.

Λ1

Λ0

Γ0

Γ1
⊗Σ

#4

⊗Π2

#2

Θ(·)

Figure 3: Structure of the new F28 inversion with optimized multiplicative depth. Signals
and operations are in F24 , where ⊗ is multiplication, ⊕ is addition, #2 is squaring, #4

swaps F22 components, ⊗_ scales by the given constant, Θ (·) computes Θ (cf. Figure 2a),
and � is a pointwise multiplication of F22 components (cf. Figure 2b).

Γ4 = γ0Z
4 + γ1Z and Φ = φ1Z

4 + φ0Z. After lifting the F22 element θ into F24 as

Θ = θπ−1π = θπ−1 (Z4 + Z
)

= θπ−1Z4 + θπ−1Z, (10)

we rewrite equation (9) as
Γ−1Φ = Θ

(
Γ4Φ

)
, (11)

which gives us the optimal multiplicative depth of two because

dep
(
Θ
(
Γ4Φ

))
= max

(
dep (Θ) ,dep

(
Γ4Φ

))
+ 1 = max (1, 1) + 1 = 2. (12)

Please note here that the multiplication with Θ is done in a pointwise manner and only
requires two F22 multiplications between θ and the respective F22 components of Γ4∆,
making it cheaper than a normal F24 multiplication which requires three F22 multiplications
as seen in equation (4).

Figure 3 shows the structure of the F28 inversion optimized for multiplicative depth.
The parts of the computation that were to the left of the aforementioned cut in the
computation graph are unchanged from the original design shown in Figure 1. Most
notably, the F24 inversion and two multiplications that were to the right of the cut have
been completely replaced using equation (11). Now the design first raises the middle input
to the 4th power by swapping the F22 components and multiplies the result with Γ0 and
Γ1. Furthermore, the design computes Θ with the sub-circuit shown in Figure 2a, with a
simplified expression

θπ−1 =
(
γ1γ0π

3 + (γ1 + γ0)2σπ
)−1 =

(
γ1γ0 + (γ1 + γ0)2σπ

)2
. (13)

Finally, the new design performs a multiplication of Θ with the results of the prior
two multiplications. Due to the two F22 components of Θ being equivalent, the F24

multiplication simplifies to a pointwise multiplication as shown in Figure 2b.
A bit-level AES S-Box implementation using the new F28 inverter is given in Appendix B.

It achieves a gate depth of 14, beating the previous record, while remaining small [BP12].
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4 HPC3.1 – A Better HPC3 Gadget
In this section, we argue that limiting a PINI gadget to operate in F2 has significant
implications on its area and randomness consumption in a masked implementation. With
the goal of achieving a low-latency masked AES S-Box utilizing our improved inverter
design, we investigate the F2 -only HPC3 gadget and show how it can be adapted to work
in arbitrary finite fields, while simultaneously improving its area requirements and giving
it better pipelining properties.

4.1 Field-level versus Bit-level Masking
While on the surface the support for larger fields does not seem like a significant feature, it
has a steep impact on the randomness requirements and gate counts. Consider the HPC1
gadget shown in Algorithm 1 and its application to the F22 multiplication from (6). One
can either mask the F22 multiplication directly with HPC1 for the field F22 , or first break
down the F22 multiplication into F2 multiplications and additions as in (6), and then apply
HPC1 gadgets and sharewise addition gadgets for F2 .

Field-level Masking. The direct F22 masking of a F22 multiplication requires
2 (d (d+ 1) /2 + r (d)) random bits and 2 refresh gadgets as each bit of Ai can be re-
freshed individually. The (d+ 1)2 multiplications in F22 , i.e., Ai ·B′j in Algorithm 1, need
3 (d+ 1)2 And gates and 2 (d+ 1) + 2 (d+ 1)2 Xor gates. The 2d (d+ 1) additions in F22

require 2 Xor gates each for a total of 4d (d+ 1) Xor gates, and similarly, the (d+ 1)2

register operations in F22 require a total of 2 (d+ 1)2 registers. Therefore, the overall cost
is d (d+ 1) + 2r (d) random bits, 2 refresh gadgets, 3 (d+ 1)2 And gates, 2 (d+ 1) (3d+ 2)
Xor gates and 2 (d+ 1)2 registers.

Bit-level Masking. In contrast, bit-blasting the F22 multiplication and then masking
the computation requires 4 sharewise F2 additions, i.e., 4 (d+ 1) Xor gates, and 3
masked F2 multiplications using the F2 version of HPC1. Each F2 HPC1 gadget needs
d (d+ 1) /2 + r(d) random bits, a refresh gadget, (d+ 1)2 And gates, 2d (d+ 1) Xor gates
and (d+ 1)2 registers. This brings the total cost to 3d (d+ 1) /2 + 3r(d) random bits, 3
refresh gadgets, 3 (d+ 1)2 And gates, 2 (d+ 1) (3d+ 2) Xor gates, and 3 (d+ 1)2 registers.

When masking a F22 multiplication, the first approach is clearly superior. While
matching the number of And and Xor gates, it requires significantly less random bits,
registers, and refresh gadgets. Moreover, it appears that this trend continues for operations
in larger F2n fields. Due to the algebraic structure of the AES S-Box, a low-latency masked
implementation should use a gadget that achieves single clock cycle latency like HPC3,
while being applicable to larger fields like HPC1.

4.2 Design, Optimization, Correctness and Security of HPC3.1
In Algorithm 3, we present HPC3.1, an improved version of the original HPC3 gadget
introduced by Knichel and Moradi [KM22]. We incorporate several improvements over its
predecessor shown in Algorithm 2.

Support for Generic Fields Fq . It turns out that the negation of Ai while computing
Wi,j in HPC3 is unnecessary, and can be removed without any negative consequences.
Although this changes the value of Ui,j in the original HPC3 from Ri,j ⊕ Pi,j ⊕Ai ∧Bj to
Pi,j ⊕Ai ∧Bj , it does not have any impact on the d-PINI property in the glitch-extended
probing model. Finally, since there are no more F2 -specific operations in Algorithm 2, one
can replace all And gates with field multiplications and all Xor gates with field additions.
This is enough for the gadget to work in any F2n field. To preserve correctness in any
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Algorithm 3: Generic HPC3.1 multiplication gadget
Input : Sharing 〈A0, . . . , Ad〉 ∈ Fd+1

q of A ∈ Fq ,
sharing 〈B0, . . . , Bd〉 ∈ Fd+1

q of B ∈ Fq ,
masks 〈Ri,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q ,
masks 〈Pi,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q

Output : Sharing 〈C0, . . . , Cd〉 ∈ Fd+1
q of C = A ·B

1 for i from 0 to d do
2 for j from i+ 1 to d do
3 Rj,i ← Ri,j , Pj,i ← −Pi,j ; // Randomness aliases
4 for i from 0 to d do
5 Vi,i ← Bi,Wi,i = 0; // Fictive same-domain terms
6 for j from 0 to d with j 6= i do
7 Vi,j ← Ri,j +Bj ; // Blinded multiplicands
8 Wi,j ← Pi,j −Ai ·Ri,j ; // Correction terms

9 Ci = Reg (Ai) ·
(∑d

j=0 Reg (Vi,j)
)

+
(∑d

j=0 Reg (Wi,j)
)
;

10 return 〈C0, . . . , Cd〉;

finite field Fpn , one must additionally enforce that Pj,i = −Pi,j for j > i, since additive
inverse is only an identity operation in F2n .

Factoring out the Ai Term. For our second improvement, notice that the same Ai

is multiplied with all different Vi,j in Algorithm 2 when computing the terms Ui,j . This
leads to the algorithm requiring (d+ 1) + (d+ 1) (2d) multiplications. However, since all
the Ai ·Vi,j multiplications share the same multiplicand Ai, one can factor it out and
instead first sum over all Vi,j before multiplying with Ai. The multiplication with Bi can
also be integrated into this sum by adding a fictitious Vi,i = Bi. Therefore, by computing
Ai ·

∑
j=0 Vi,j instead of what was done in the original HPC3 gadget in Algorithm 2, the

optimized generic gadget HPC3.1 shown in Algorithm 3 replaces (d+ 1)2 multiplications
with only (d+ 1) multiplications, requiring only (d+ 1)2 multiplications overall. Of course,
the values of Ai and Vi,j must still be placed in registers, so there are no direct savings in
register counts, i.e., HPC3.1 still requires 2 (d+ 1)2 registers. However, since HPC3.1 puts
both input sharings 〈A0, . . . , Ad〉 and 〈B0, . . . , Bd〉 into registers, it effectively pipelines
them, making their signals available at an additional clock cycle latency. This pipelining
effect of the HPC3.1 gadget has the potential of sharing these pipelining registers with
other parts of the overall design, e.g., other HPC3.1 gadgets that share an input. As
for additions, HPC3.1 requires the same number of field additions as the original HPC3
gadget, that is, 4d (d+ 1).

Next, we prove that the new HPC3.1 gadget is indeed correct and fulfills the d-PINI
property in the glitch-extended probing model. The proof consists of two parts, where
we first show that the HPC3.1 gadget computes a correct multiplication, and afterwards
prove that it also fulfills the d-PINI property.

Theorem 1. Let A = 〈A0, . . . , Ad〉 ∈ Fd+1
q be a sharing of A ∈ Fq , B = 〈B0, . . . , Bd〉 ∈

Fd+1
q be a sharing of B ∈ Fq . Furthermore, let R = 〈Ri,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q

and P = 〈Pi,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2
q be tuples of uniform and independent random

elements in Fq . Finally, let the sharing C = 〈C0, . . . Cd〉 ∈ Fd+1
q of C ∈ Fq and the

intermediate values T be computed according to Algorithm 3. The masked computation
ψHP C3.1 : 〈A ∪B,R ∪P〉 7→ 〈C,T〉 implements a correct Fq multiplication and is d-PINI
in the glitch-extended probing model.
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Proof. (Correctness.) The generic HPC3.1 gadget computes Ci = Ai ·
(∑d

j=0 Vi,j

)
+(∑d

j=0 Wi,j

)
, where Vi,i = Bi and Wi,i = 0, and similarly Vi,j = Ri,j + Bj and Wi,j =

Pi,j − Ai ·Ri,j for i 6= j. We summarize these two cases by introducing fictitious values
Ri,i = 0 and Pi,i = 0. Expanding Ci, we get

Ci = Ai ·

 d∑
j=0

Vi,j

+

 d∑
j=0

Wi,j

 =
d∑

j=0
(Ai ·Vi,j +Wi,j) =

=
d∑

j=0
(Ai · (Ri,j +Bj) + Pi,j −Ai ·Ri,j) =

d∑
j=0

(Ai ·Bj + Pi,j) .

Furthermore, expanding Ci in C =
∑d

i=0 Ci, we see that

C =
d∑

i=0
Ci =

d∑
i=0

d∑
j=0

(Ai ·Bj + Pi,j) =
d∑

i=0

d∑
j=0

Ai ·Bj +
d∑

i=0

d∑
j=0

Pi,j =

=
(

d∑
i=0

Ai

) d∑
j=0

Bj

+
d−1∑
i=0

d∑
j=i+1

Pi,j +
d−1∑
i=0

d∑
j=i+1

Pj,i +
d∑

i=0
Pi,i = A·B.

(PINI.) In addition to the output sharing C, a probing attacker also has access to all
intermediate values T, which includes all input values in A, B, R and P, extended probes
on explicit intermediates {Vi,j ,Wi,j | i, j ∈ [0, d]}, as well as all implicit intermediates like
individual additions and multiplications without a named result shown in Algorithm 3. In
the glitch-extended probing model, some of those probes are contained (subsumed) within
other more powerful probes, e.g., ρ (Ai ·Ri,j) = {Ai, Ri,j} ⊂ {Pi,j , Ai, Ri,j} = ρ (Wi,j). It
is sufficient to analyze the set of all unsubsumed extended probes to prove that the masked
computation ψHP C3.1 is d-PINI. Unsubsumed extended internal probes are ρ (Vi,j) =
{Ri,j , Bj} and ρ (Wi,j) = {Pi,j , Ai, Ri,j} for i 6= j. The extended output probes ρ (Ci)
subsume everything in their computational cone, with ρ (Ci) = {Ai} ∪

⋃d
j=0 {Vi,j ,Wi,j}.

We first show that any set of output probes Qout = {ρ (Ci) | i ∈ I} is perfectly simulated
by AI ∪BI under A∪B. We give a constructive proof. Perfectly simulating ρ (Ci) requires
at least the domain i because Ai, Bi ∈ ρ (Ci). When ρ (Cj) 6∈ Qout, additionally simulating
Vi,j ,Wi,j ∈ ρ (Ci) does not require an additional domain, as the distribution of Vi,j and
Wi,j is uniformly random because of the masks Ri,j and Pi,j , which are not present
elsewhere. If ρ (Cj) ∈ Qout, perfectly simulating Vi,j and Vj,i requires both Bj and Bi

respectively. Similarly, perfectly simulating Wi,j and Wj,i requires Ai and Aj . However,
since ρ (Cj) ∈ Qout then also j ∈ I by definition, and thus Bj , Aj ∈ AI ∪BI .

Finally, we show that any sets of output probes Qout and internal probes Qint can be
perfectly jointly simulated by AI′ ∪ BI′ under A ∪ B, where I ′ ⊇ I, |I ′| ≤ |I| + |Qint|
and I is defined as before. We prove this inductively, where, assuming that input shares
AI′ ∪BI′ simulate Qout ∪Qint under A∪B, we show that there is a set of indices I ′′ such
that AI′′ ∪BI′′ simulates Qout ∪Qint ∪ {ρ (Q)}, with Q ∈ {Vi,j ,Wi,j | i, j ∈ [0, d] , i 6= j}
and I ′′ ⊇ I, |I ′′| ≤ |I ′|+ 1. Here, if ρ (Q) ∈ Qint, then I ′′ = I ′. Otherwise, we perform a
case distinction based on Q:

• (Case Q = Vi,j , i.e., ρ (Q) = {Ri,j , Bj}). If ρ (Cj) ∈ Qout, then Ri,j , Bj ∈ ρ (Q) and
(Rj,i +Bi) ∈ ρ (Cj) must all be simulated jointly. Since j ∈ I because ρ (Cj) ∈ Qout,
the simulator can additionally require input share i for the simulation of Rj,i +Bi

and Ri,j = Rj,i, simulating the additional probe ρ (Q). Therefore set I ′′ = I ′ ∪ {i}.
Otherwise, use the additional input share j for access to Bj ∈ ρ (Q), i.e., set I ′′ =
I ′∪{j}. Either way, input shares AI′′ ∪BI′′ perfectly simulate Qout∪Qint∪{ρ (Q)}
under A ∪B and |I ′′| ≤ |I ′|+ 1.
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• (Case Q = Wi,j , i.e., ρ (Q) = {Pi,j , Ai, Ri,j}). If ρ (Ci) ∈ Qout, then Pi,j , Ai, Ri,j ∈
ρ (Q) and (Ri,j +Bj) ∈ ρ (Ci) must all be simulated jointly. Here, i ∈ I because
ρ (Ci) ∈ Qout. Therefore, the simulator can additionally require input share j
necessary for the joint simulation of Ri,j and Ri,j + Bj , so set I ′′ = I ′ ∪ {j}.
Otherwise, set I ′′ = I ′ ∪ {i} to guarantee the simulator has access to Ai. In both
cases, input shares AI′′ ∪BI′′ perfectly simulate Qout ∪Qint ∪ {ρ (Q)} under A∪B
and |I ′′| ≤ |I ′|+ 1.

The HPC3.1 gadget with d+ 1 shares is d-PINI in the glitch-extended probing model.

5 Reusing Randomness in HPC1 and HPC3.1 Gadgets
Masking a circuit using HPC1 and HPC3.1 gadgets requires a lot of uniform random
values per gadget execution. This has a direct impact on the area required for the
finished circuit due to the need for fast pseudo-random number generators (PRNGs).
Recently, Feldtkeller et al. [FKS+22] proposed a holistic method for reducing randomness
requirements of masked S-Boxes implemented using DOM and HPC2 gadgets. Their method
uses the structure of the given S-Box to argue when it is “safe” to reuse randomness, e.g.,
when gadget inputs are independent of each other. However, as they point out, their reuse
strategy only preserves a restricted version of the respective SNI and PINI security notions.

In the following, we present an orthogonal randomness reuse method that preserves
full d-PINI security without any downsides. The intuition behind this optimization is that
both the HPC1 and HPC3.1 gadgets use part of their input masks to blind the sharing
of B, and then perform any interactions with the sharing of A using the blinded values.
Importantly, the randomness used for the blinding of an input sharing does not propagate
to the output sharing of C, e.g., Ci does not functionally depend on the value of Ri,j in
HPC3.1 (cf. Theorem 1). This means that the randomness used for blinding is local to the
gadget and could potentially be reused under certain circumstances.

Intuitively, a simple case for reusing randomness is when the same value B is multiplied
with several different values A. Moreover, this exact situation appears multiple times in
the design of both the original inverter design by Canright shown in Figure 1, as well as
our modified design shown in Figure 3 In the following, we analyze this reuse case for both
gadgets, and prove that the respective blinding values Ri and Ri,j can be reused while
preserving the d-PINI property in the glitch-extended probing model.

Theorem 2. For k ∈ [0, n) let 〈Ak,0, . . . , Ak,d〉 ∈ Fd+1
q be sharings of Ak ∈ Fq and let

〈Pk,i,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2
q be tuples of uniform and independent random elements

in Fq . Furthermore, let 〈B0, . . . , Bd〉 ∈ Fd+1
q be a sharing of B ∈ Fq , and let 〈R0, . . . , Rd〉 ∈

Fd+1
q be a fresh, independent sharing of 0 ∈ Fq . The masked computation ψnHPC1 :
〈A∗,∗ ∪B,R ∪P∗〉 7→ 〈C∗,∗,T∗〉 representing a sequence of HPC1 gadget applications

〈Ck,0, . . . , Ck,d〉 = HPC1 (〈Ak,0, . . . Ak,d〉 , 〈B0, . . . Bd〉 ,
〈R0, . . . , Rd〉 , 〈Pk,i,j | 0 ≤ i < j ≤ d〉)

(14)

is d-PINI in the glitch-extended probing model. It correctly computes the output sharings
〈Ck,0, . . . , Ck,d〉 ∈ Fd+1

q of Ck ∈ Fq for k ∈ [0, n), where Ck = Ak ·B.

Proof. (Sketch.) The correctness follows from the correctness of HPC1. In the interest of
brevity, we just give the reasoning behind the preservation of the d-PINI property when
sharing the blinding randomness, rather than repeating the bulk of Cassiers’ proof [CGLS21]
in a different notation. The extended output share probe for share index i is

⋃n−1
k=0 ρ (Ck,i) =⋃n−1

k=0
⋃d

j=0 {Pk,i,j +Ak,i · (Bj +Rj)}, with fictive terms Pk,i,i = 0 for all k, i used for
brevity. Since all Pk,i,j are different independent and uniformly random field elements of
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Fq for j 6= i, they effectively isolate all individual HPC1 gadgets from each other and make
their output probes trivially jointly simulatable by {Ak,i | 0 ≤ k < n} under A∗,∗∪B. The
joint simulation for output share index probes Qout follows the same arguments as for a
single HPC1 gadget.

For the additional simulation of internal probes only ρ (Bi +Ri) = {Bi, Ri} and
ρ (Vk,i,j) = {Pk,i,j , Ak,i, Bj +Rj} must be considered, as everything else is subsumed by
the more powerful output probes. For the probe ρ (Bi +Ri), the simulator must have
access to Bi and thus domain i. The simulation of probe ρ (Vk,i,j) requires access to domain
i since Ak,i ∈ ρ (Vk,i,j). If ρ (Ck,j) ∈ Qout, then −Pk,i,j +Ak,j ·(Bi +Ri) = Vk,j,i ∈ ρ (Ck,j)
must be jointly simulated with Pk,i,j , Ak,i, (Bj +Rj) ∈ ρ (Vk,i,j), which requires domains i
and j but domain j is already available due to ρ (Ck,j) ∈ Qout. If ρ (Bj +Rj) ∈ Qint then
(Bj +Rj) ∈ ρ (Vk,i,j) must be jointly simulated with Rj ∈ ρ (Bj +Rj), which requires
domain j but j is available since ρ (Bj +Rj) ∈ Qint. If ρ (Vk′,i′,j) ∈ Qint, then Ak,i,
Ak′,i′ , and Bj + Rj must be simulated jointly, however share index i′ is available since
ρ (Vk′,i′,j) ∈ Qint. This last combination is the reason the reuse of 〈R0, . . . , Rd〉 works
when the input 〈B0, . . . , Bd〉 to all HPC1 gadgets is equivalent. Otherwise, for d > 1,
one would need to jointly simulate Bk,j +Rj and Bk′,j +Rj , which requires simulating
(Bk,j +Rj) − (Bk′,j +Rj) = Bk,j − Bk′,j . This is only possible when Bk,j − Bk′,j is a
constant or with access to input domain j, in addition to i and i′. The latter would break
the d-PINI guarantees.

Theorem 3. Let 〈Ak,0, . . . , Ak,d〉 ∈ Fd+1
q be valid sharings of Ak ∈ Fq for k ∈ [0, n), and

〈B0, . . . , Bd〉 ∈ Fd+1
q be a valid sharing of B ∈ Fq . Furthermore, let 〈Ri,j | 0 ≤ i < j ≤ d〉 ∈

Fd(d+1)/2
q and 〈Pk,i,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q , for k ∈ [0, n), be n + 1 tuples of uni-
form and independent random elements in Fq . The masked computation ψnHPC3.1 :
〈A∗,∗ ∪B,R ∪P∗〉 7→ 〈C∗,∗,T∗〉 representing a sequence of HPC3.1 gadget applications

〈Ck,0, . . . , Ck,d〉 = HPC3.1 (〈Ak,0, . . . Ak,d〉 , 〈B0, . . . Bd〉 ,
〈Ri,j | 0 ≤ i < j ≤ d〉 , 〈Pk,i,j | 0 ≤ i < j ≤ d〉)

(15)

is d-PINI in the glitch-extended probing model. It correctly computes the output sharings
〈Ck,0, . . . , Ck,d〉 ∈ Fd+1

q of Ck ∈ Fq for k ∈ [0, n), where Ck = Ak ·B.

Proof. (Sketch.) The correctness follows from the correctness of HPC3.1. The proof of the
d-PINI property follows the same structure as the proof for HPC3.1 itself. The argument
for the simulation of outputs hinges on elements of ρ (Ck,i) and ρ (Ck′,i) being isolated
through different randomness Pk,i,j and Pk′,i,j , belonging to domain i, e.g., {Ak,i, Ak′,i, Bi},
or belonging to both outputs and thus not granting any additional information, e.g.,
(Bj +Ri,j) ∈ ρ (Ck,i)∩ρ (Ck′,i). If input 〈B0, . . . , Bd〉 were not the seme across all HPC3.1
instances and each got a different input 〈Bk,0, . . . , Bk,d〉 for k ∈ [0, n), then Bk,j + Ri,j

and Bk′,j +Ri,j would need to be simulated jointly, like in the proof of Theorem 2. This
requires either Bk,j − Bk′,j to be a constant or the additional input share index j 6= i
for the simulation of ρ (Ck,i) ∪ ρ (Ck′,i) under A∗,∗ ∪B, which would violate the d-PINI
proprety. As for the internal probes, the arguments remain the same as in the proof of
Theorem 1, with minor changes to replace Ai, Pi,j , and Wi,j with Ak,i, Pk,i,j , and Wk,i,j

respectively.

6 Masking the F28 Inversion
With the d-PINI gadgets HPC1 and HPC3.1 in hand, we are ready to mask the new design
of the F28 inversion shown in Figure 3. Because we have presented the first non-trivial
inverter design with dep

(
G−1) = 3, we are primarily interested in masked implementations

achieving a latency of only three clock cycles. However, in order to gauge the quality
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(a) All-HPC3.1 masked F28 inverter with a latency of three clock cycles
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Figure 4: Masked implementation of the new F28 inverter using HPC1 gadgets, HPC3.1
gadgets, pipelining registers and trivially masked linear operations. Solid lines represent
tuples of F24 elements while dotted lines show tuples of F22 elements.

of the inverter itself and have a better comparison against related work, we additionally
investigate designs that achieve a latency of four clock cycles using both the old (cf.
Figure 1) and new (cf. Figure 3) F28 inverter design.

The HPC1 and HPC3.1 gadgets have different cost characteristics, with HPC3.1
requiring more area and randomness in general, while HPC1 introduces additional output
latency when both inputs arrive at the same time. Complicating matters further, there are
many possible ways of reusing blinding randomness that must be taken into account. In
the following we elaborate the design constraints, forced design features and optimization
oportunities, resulting in three candidate designs.

6.1 Forced Design Features for a Latency of Three Clock Cyles
Aiming for the minimal latency of three clock cycles requires the use of the new F28 inverter
and constrains the design space significantly. For example, the very first F24 multiplication
between Γ0 and Γ1 in Figure 3 cannot use a HPC1 gadget and achieve the optimal latency,
as the output would already have a latency of two clock cycles. Since the rest of the circuit
has two multiplication stages needing at least one clock cycle each, the overall latency
would exceed three clock cycles. Therefore, any latency-optimal design based on HPC1
and HPC3.1 gadgets must use HPC3.1 for this F24 multiplication.

For similar reasons, the F22 multiplication between γ0 and γ1 in Figure 2a when
computing Θ, must also use a HPC3.1 gadget, since its inputs have a latency of one, and
its outputs must achieve a latency of two to stay under three clock cycles overall.

Finally, the two pointwise multiplications computing Λ0 and Λ1 in Figure 3 must be
implemented using HPC3.1 F22 multiplication gadgets, as neither of their inputs can have
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a latency of one clock cycle due to multiplicative depth. Moreover, these HPC3.1 gadgets
force a randomness reuse pattern for optimal designs because they share the multiplicand
θ, cf. equation (9) and Figure 2. Therefore, according to Theorem 3, all these HPC3.1
gadgets can share the randomness 〈Ri,j | 0 ≤ i < j ≤ d〉 used to blind the sharing of θ
(the second input sharing), while preserving the d-PINI property in the glitch-extended
probing model. This randomness reuse effectively reduces the randomness cost of the
masked inverter by 3d (d+ 1) bits.

6.2 An All-HPC3.1 Design
The first masked F28 inverter design we present uses HPC3.1 gadgets for the two F24

multiplications between the output of #4 and Γ0, respectively Γ1. While HPC3.1 gadgets
do have a larger area and randomness than HPC1 gadgets, they make up for it with good
randomness reuse possibilities inside the F28 inversion shown in Figure 3. Since both
HPC3.1 gadgets share an input, we can directly reuse the randomness necessary to blind
the output of #4, cutting down the randomness cost by 2d (d+ 1) bits. Moreover, if we
look at the structure of the Θ computation, we see that the upper and lower F22 parts
of the #4 output are multiplied, as seen in Figure 2a. This means that we can reuse
the randomness used to blind, e.g., the lower F22 portion in the the two aforementioned
F24 multiplications, saving an additional d (d+ 1) random bits. Overall the design uses
16d (d+ 1) random bits, 3 HPC3.1 F24 multiplications and 5 HPC3.1 F22 multiplications.

Figure 4a shows the structure of the masked all-HPC3.1 F28 inverter. Due to the
pipelining properties of HPC3.1 gadgets, all shown pipelining registers are shared with
a HPC3.1 gadget and thus free. Red wavy lines indicate blinding randomness and show
its reuse across gadgets, while purple lines show the non-local randomness consumed by
HPC3.1 gadgets.

6.3 Masking the new F28 Inverter with a Latency of Four Clock Cycles
Moving away from the minimal latency of three clock cycles achievable through HPC1 and
HPC3.1 gadgets, we observe that there are no more forced design features and we are free
to replace any HPC3.1 gadget from the previous design with a hopefully cheaper HPC1
implementation. However, some replacements are objectively better than others. Through
manual and machine-assisted analysis, we have identified the design shown in Figure 4b as
the most promising candidate achieving a latency of four clock cycles while saving area
and randomness at higher masking orders. For instance, one can use HPC1 gadgets for
the F24 multiplication between the output of #4 and Γ0, respectively Γ1, all while being
able to also reuse the blinding randomness by choosing the #4 output as the second input
sharing, and adding pipelining registers for Γ0 and Γ1 so they arrive at the HPC1 gadgets
after two clock cycles. This change creates an input latency imbalance in the four F22

multipliers required for the two pointwise multiplications in the new inverter design. In
turn, this imbalance allows the use of HPC1 gadgets for these F22 multiplications, while
saving area and reusing randomness like in the all-HPC3.1 implementation. Overall the
design uses 6r (d) + 14d (d+ 1) random bits, one HPC3.1 multiplier for F22 and F24 , two
F24 HPC1 multipliers and four F22 HPC1 multipliers. Compared to the all-HPC3.1 design,
this design should need less area and save randomness starting at d = 4.

6.4 Better Masking of Canright’s original F28 Inverter
Canright’s inversion shown in Figure 1 is the basis for most efficient masked F28 inverters
implemented in related work. There is also a body of work on rewriting the bit-level
description of Canright’s inverter to either get smaller unmasked circuits or flatter circuits
for low intra-clock cycle latencies in unmasked designs. Boyar and Peralta [BP12] present
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Algorithm 4: A bit-level implementation of F24 inversion
Input :Γ = g3Z

4W 2 + g2Z
4W + g1ZW

2 + g0ZW
Output :Γ−1 = Λ = l3Z

4W 2 + l2Z
4W + l1ZW

2 + l0ZW
1 a0 ← g1 + g0;
2 a1 ← g3 + g2;
3 b0 ← g2 ·g0;
4 b1 ← g3 ·g1;

5 c0 ← a0 + b0;
6 c1 ← a1 + b0;
7 d0 ← g0 + b1;
8 d1 ← g2 + b1;

9 e0 ← g3 ·c0;
10 e1 ← g1 ·c1;
11 f0 ← a1 ·d0;
12 f1 ← a0 ·d1;

13 l3 ← a0 + e1;
14 l2 ← g0 + f1;
15 l1 ← a1 + e0;
16 l0 ← g2 + f0;

one such flat implementation, which implements the F24 inversion required in Canright’s
inverter with only 7 F2 multiplications and a multiplicative depth of dep

(
Γ−1) = 2.

Unfortunately, bit-level masking of their F24 inverter design leads to worse randomness
use than a direct masking of Canright’s circuit using masked F22 operations. However, the
idea of using a bit-level masking for the F24 inverter is interesting. A design using at most
six F2 multiplications with dep

(
Γ−1) = 2 could break even in randomness consumption,

while using less operations overall. We have searched for such a bit-level circuit using a
SAT-solver based approach inspired by Stoffelen’s prior work [Sto16]. The result of our
search is the first known bit-level F24 inverter to achieve the optimal number of six F2
multiplications for a multiplicative depth of two, as shown in Algorithm 4. 1

If we consider the design space of masked inverters based on Canright’s design that
achieve a latency of four clock cycles, there are several forced design features. For similar
reasons as elaborated in Section 6.1, the F24 multiplication between Γ0 and Γ1 from
Figure 1 must be implemented using a HPC3.1 gadget. The same goes for the two bit-level
multiplications resulting in b0 and b1 shown in Algorithm 4. All other multiplications are
unconstrained. Moreover, the four bit-level multiplications resulting in e0, e1, f0, and f1 in
Algorithm 4 may also be implemented using the HPC2 gadget without a significant overhead,
compared to F22 or F24 multiplications. Later, we refer to these four multiplications as
middle multiplications, whereas the two F24 multiplications at the back of Figure 1 are
referred to as back multiplications.

Different choices for the unconstrained field multiplications lead to slightly different
area and randomness overheads. As an example, the two F24 back multiplications can
share the blinding randomness when implemented using HPC3.1, while they may use
less randomness starting at d = 4 when implemented using HPC1. The two middle F2
multiplications should use the least randomness when implemented with HPC2, but may
require more area than implementing them with HPC1.

7 Evaluation
In this section we first present the synthesis, testing and formal verification workflow used
when developing and evaluating all gadgets and designs proposed in this paper. Afterwards,
we present the evaluation results for HPC3.1 field multiplications in F2 , F22 and F24 for
practically relevant masking orders. Afterwards we evaluate masked AES S-Box designs
based on different masked F28 inverters presented in Section 6. Finally, we compare our
work against state-of-the-art AES S-Box implementations and demonstrate its efficiency.
The masked hardware designs, as well as the testing and formal verification code are open
source and available at

https://github.com/vedadux/Three-Stage-AES

1Boyar and Peralta [BP12] found circuits with only 5 multiplications with dep
(
Γ−1
)

= 3 and 7
multiplications with dep

(
Γ−1
)

= 2 through a different method.

https://github.com/vedadux/Three-Stage-AES
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7.1 Synthesis, Testing and d-PINI Verification
In Sections 4.1 and 4.2 we give exact counts for the field operations needed to implement
the HPC1 and HPC3.1 gadgets. Similarly, we give detailed descriptions of inverter designs
in Section 6 accompanied with block diagrams shown in Figure 4. However, while these
are a good indicator of the real hardware cost in general, it is often more illuminating
to see their cost in terms of gate equivalents (GE) when synthesized in a real cell library.
Additionally, since masked computations usually require a lot of randomness, each random
bit that must be generated at runtime using a PRNG induces additional area overhead.
A recent paper proposes unrolled Trivium as a cost-effective PRNG [CMM+24], so we
incorporate its per-bit average cost into our area considerations.

We have synthesized, functionally tested, and verified the d-PINI property of all gadgets
and designs discussed in this paper. All designs were implemented in SystemVerilog. We
have opted for the open source synthesis flow where the designs are first translated to
Verilog using the SV2V utility [SH], and then elaborated, optimized and synthesized using
Yosys [WGK13]. The circuits are technology-mapped using ABC [SG], with NanGate45
as the target cell library. In this cell library, the area overhead required by the Trivium
PRNG is 39.4 GE per random bit.

The functionality of all designs has been thoroughly tested both at the RTL and the
netlist level using the open source simulator Verilator [Sny]. Moreover, we have verified
that all presented designs are d-PINI using the formal verification tools VerifMSI [MT23]
and, to a minor extent, SILVER [KSM20]. Here, we first parse the netlists and encode them
for VerifMSI using its Python API and run their d-PINI verification. If the verification is
successful, we know that the masked computation is d-PINI. Otherwise, we get a list of all
leaks present in the design. While this has found real implementation errors throughout
the design process, it also produces false d-PINI violations on occasion. In such cases, we
have analyzed the leakage reports with a modified version of SILVER, since it performs an
exact count of the probability distributions involved. For the final designs, all issues raised
by VerifMSI were verified to be spurious.

7.2 Comparison with Other d-PINI Multiplication Gadgets
Table 1 shows area and randomness cost of masked field multiplications implemented with
HPC1 [CGLS21], HPC2 [CGLS21], HPC3 [KM22], HPC3.1 (this work), HPC3o [CGM+24]
(non-Toffoli variant) and HPC4 [CSV24]. We see a clear reflection of the operation
counts mentioned in Sections 4.1 and 4.2, where the HPC1 gadget consumes less area
and randomness than the corresponding HPC3.1 gadget. Therefore, a design that can
either use a HPC1 or HPC3.1 gadget for a masked field multiplication is better off using
HPC1 in most cases. For F2 multiplications, using HPC2 instead of HPC3.1 is also an
option when aiming for designs that use less randomness. Possible exceptions include
cases where blinding randomness can be shared across multiple HPC3.1 instances but not
HPC1 gadgets due to latency constraints or HPC2 gadgets where randomness sharing
does not seem possible at all. Comparing HPC3.1 to HPC3, we see that it is always
better, although only by a small margin in F2 . In larger fields, were HPC3 to remove the
negations as mentioned in Section 4.2, this difference would be even more pronounced
due to multiplications in F2n dominating the area cost, compared to F2 where they are
implemented using cheap And and Nand gates.

Comparison of HPC3.1 and HPC3o. Concurrently to our work on this paper,
Cassiers et al. published the HPC3o gadget as part of the Compress [CGM+24] automated
masking suite. Both HPC3.1 and HPC3o remove the negation of Ai, enabling the gadgets to
work in arbitrary fields, while being d-PINI property in the glitch-extended probing model.
The main difference between HPC3.1 and HPC3o is how they modify their HPC3 blueprint.
Unlike HPC3.1, which factors out Reg (Ai) to save (d+ 1)2 − (d+ 1) multiplications over
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Table 1: Cost of a masked multiplications using various HPC gadgets in different fields.

Gadget Field d
Random
bits

Area (GE)

standalone w.PRNG

HPC1 +
Shared
Zero

F2

1 2 56.3 135.1
2 5 127.0 324.0
3 10 217.3 611.3
4 15 325.0 916.0

F22

1 4 139.3 296.9
2 10 309.0 703.0
3 20 528.0 1316.0
4 30 791.7 1973.7

F24

1 8 386.0 701.2
2 20 822.7 1610.7
3 40 1397.0 2973.0
4 60 2072.0 4436.0

HPC2 F2

1 1 82.3 121.7
2 3 209.0 327.2
3 6 392.7 629.1
4 10 633.3 1027.3

HPC3o
+

Reg (A)

F2

1 2 50.0 128.8
2 6 135.0 371.4
3 12 265.3 738.1
4 20 435.0 1223.0

F22

1 4 135.7 293.3
2 12 368.0 840.8
3 24 715.3 1660.9
4 40 1173.0 2749.0

F24

1 8 379.3 694.5
2 24 1048.0 1993.6
3 48 2006.7 3897.9
4 80 3285.7 6437.7

Gadget Field d
Random
bits

Area (GE)

standalone w.PRNG

HPC3 F2

1 2 69.3 148.1
2 6 168.0 404.4
3 12 302.7 775.5
4 20 484.7 1272.7

HPC3.1

F2

1 2 64.7 143.5
2 6 159.0 395.4
3 12 293.3 766.1
4 20 466.7 1254.7

F22

1 4 167.3 324.9
2 12 390.0 862.8
3 24 705.3 1650.9
4 40 1116.7 2692.7

F24

1 8 437.7 752.9
2 24 1002.0 1947.6
3 48 1769.3 3660.5
4 80 2791.3 5943.3

HPC4

F2

1 5 93.3 290.3
2 15 242.0 833.0
3 30 458.7 1640.7
4 50 742.0 2712.0

F22

1 10 251.3 645.3
2 30 637.0 1819.0
3 60 1205.7 3569.7
4 100 1947.7 5887.7

F24

1 20 693.0 1481.0
2 60 1756.3 4120.3
3 120 3287.0 8015.0
4 200 5332.3 13212.3

HPC3, HPC3o instead puts the Ai ·Bi term together with one of the cross-domain terms
Wi,j , saving (d+ 1) multiplications and pipelining registers over HPC3, as well as (d+ 1)
additions when working in F2n due to the additive inverse being the identity operation.
We see a reflection of this in Table 1, where HPC3.1 is more efficient in larger fields and at
larger protection orders, due to the domination of multiplication costs. While the register
savings in HPC3o are great, they do not really help when masking the new F28 inversion
since the inputs are almost always pipelined outside of the multiplication gadgets as seen
in Figure 4. Importantly, the rewrites used in HPC3.1 and HPC3o are orthogonal and can
be applied jointly for an even better gadget, cf. Appendix A.

Comparison of HPC3.1 and HPC4. Concurrently to our development of HPC3.1,
Cassiers et al. [CSV24] presented HPC4, a low-latency secure multiplication gadget that
similarly diverges from HPC3. It fulfils a more strict security property called Output
(O)-PINI, which ensures secure self-composition in the presence of transition leakage. What
this means is that, unlike HPC3.1 and other mentioned gadgets, the output of a HPC4
gadget can be connected to its input in the next clock cycle without issues. However,
this comes at the cost of significant area and randomness overheads as shown in Table 1.
Interestingly, because HPC4 and HPC3 have a similar structure, one can trivially apply
the factorization trick from HPC3.1 to improve the HPC4 gadget while maintaining the
O-PINI property.
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Masked AES S-Box implementations based on inverters from Section 6 can circumvent
transition issues by either (i) waiting for one clock cycle between rounds in the case of
serial implementations, or (ii) feeding all S-Box instances with the constant 0 ∈ Fd+1

28 after
the first clock cycle of each round in fully parallel implementations. Alternatively, one
could also replace the back HPC3.1 and HPC1 multiplications with HPC4 to preserve
optimal latency and achieve composable security in the presence of glitches and transitions.

7.3 Comparison with State-of-the-Art d-PINI AES S-Boxes
In the following, we compare our new d-PINI AES S-Boxes and highlight their differences.
Additionally, we compare the new masked S-Box designs to state-of-the-art masked d-PINI
AES S-Box implementations from the literature. Table 2 shows the latency, area, and
randomness cost of the various d-PINI AES S-Box implementations.

Our d-PINI AES S-Boxes. As the first masked AES S-Box using the new F28

inverter, the all-HPC3.1 design from Section 6.2 is also the only one in our comparison
that achieves a latency of three clock cycles. Moreover, it has relatively modest area and
randomness costs. Among the two masked AES S-Boxes achieving a latency of four clock
cycles, the design from Section 6.4 based on Canright’s F28 inversion with the new bit-level
F24 inversion performs slightly better across the board than design from Section 6.3, which
is based on the new F28 inverter. Thus, we select the d-PINI AES S-Boxes based on
Sections 6.2 and 6.4 for detailed comparison to the state-of-the-art.

Other d-PINI AES S-Boxes. Because of the trivial composability guaranteed by
the d-PINI property, many recent papers propose automated synthesis of masked designs
from regular unmasked hardware implementations at arbitrary protection orders using a
library of d-PINI gadgets [KMMS22, WFP+24, CGM+24]. Most of these methods work
based on a netlist representation of a circuit and can, therefore, not take advantage of
field-level masking in the particular case of the AES S-Box. As discussed in Section 4.1,
the limitation to bit-level masking leaves the automated methods AGEMA [KMMS22] and
AGMNC [WFP+24] at a massive disadvantage, making their results wholly uncompetitive
as seen in Table 2. Notable exceptions among state-of-the-art d-PINI AES S-Boxes are
those proposed by Knichel and Moradi [KM22], which are the first to use HPC3, the
ones proposed by Momin et al. [MCS22], where manual optimization was performed
after automated masking, and those produced by Compress [CGM+24], which also has
the capability to mask in fields other than F2 . Nevertheless, our two selected masked
S-Boxes require between 22% and 44.2% less PRNG-adjusted area than the designs by
Momin et al. or Knichel and Moradi. Compress’ Canright-based masked AES S-Box is
of comparable costs to our results, where the all-HPC3.1 design saves between 0.9% and
6.9% PRNG-adjusted area and the design from Section 6.4 requires between 8.2% and
12.5% less PRNG-adjusted area. Better inverter designs, better multiplication gadgets and
clever randomness reuse are vital for performant masked AES S-Box implementations.

7.4 Comparison with non-PINI masked AES S-Boxes
Efficient masking of the AES S-Box is a well researched topic. In Table 3, we present
an assortment of various state-of-the-art masked AES S-Box designs together with their
latency, randomness and area characteristics. Threshold Implementation (TI) is the
longest standing class of masking techniques which split the target functions in such a
way that each share of the output is completely independent of at least one input share,
making them trivially resistent in the presence of glitches. Compared with the works of
Cnudde et al. [CRB+16], Ueno et al. [UHA17] and Bilgin et al. [BGN+15], our proposed
AES S-Boxes have a lower latency and randomness cost, leading to PRNG-adjusted area
savings between 10% and 26.3%, all while being trivially composable. Furthermore, our
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Table 2: Area and randomness cost of our masked d-PINI AES S-Boxes compared to
state-of-the-art d-PINI designs, annotated with percentages showing how much cost is
saved by the All-HPC3.1 design (black) and the HPC1-middle-HPC1-back design (gray).

AES S-Box Latency
(cycles)

d
Random
bits

Area (GE)

standalone with PRNG

New F28 Inverter
All-HPC3.1
(Section 6.2)

3

1 32 −−−
9.4% 1875 −−−

3.7% 3136 −−−
6.0%

2 96 −−−
0.0% 4176 −−−

7.1% 7958 −−−
3.7%

3 192 −−−
0.0% 7687 −−−

14.6% 15252 −−−
7.4%

4 320 −−−
6.2% 11465 −−−

13.7% 24073 −−−
9.8%

New F28 Inverter Mixed
HPC1 and HPC3.1

(Section 6.3)
4

1 34 5.9%
14.7% 1905 1.5%

5.2% 3244 3.3%
9.1%

2 96 0.0%
0.0% 4126 −1.2%

6.0% 7908 −0.6%
3.1%

3 192 0.0%
0.0% 7215 −6.5%

9.0% 14780 −3.2%
4.4%

4 310 −3.2%
3.2% 10899 −5.2%

9.2% 23113 −4.2%
6.1%

Canright HPC1-middle
HPC1-back
(Section 6.4)

4

1 29 −10.3%
−−− 1806 −3.8%

−−− 2948 −6.4%
−−−

2 96 0.0%
−−− 3880 −7.6%

−−− 7662 −3.9%
−−−

3 192 0.0%
−−− 6563 −17.1%

−−− 14127 −8.0%
−−−

4 300 −6.7%
−−− 9893 −15.9%

−−− 21713 −10.9%
−−−

Compress [CGM+24]
Canright (with fields)1 4

1 36 11.1%
19.4% 1950 3.8%

7.4% 3368 6.9%
12.5%

2 96 0.0%
0.0% 4560 8.4%

14.9% 8342 4.6%
8.2%

3 192 0.0%
0.0% 8060 4.6%

18.6% 15624 2.4%
9.6%

4 300 −6.7%
0.0% 12480 8.1%

20.7% 24300 0.9%
10.6%

Low-Latency HPC
[KM22] HPC33 4

1 68 52.9%
57.4% 1849 −1.4%

2.3% 4528 30.7%
34.9%

2 204 52.9%
52.9% 4855 14.0%

20.1% 12892 38.3%
40.6%

3 408 52.9%
52.9% 9261 17.0%

29.1% 25336 39.8%
44.2%

AGMNC [WFP+24]
AND-XOR13 6

1 66 51.5%
56.1% 2895 35.2%

37.6% 5495 42.9%
46.3%

2 165 41.8%
41.8% 5745 27.3%

32.5% 12246 35.0%
37.4%

3 330 41.8%
41.8% 9243 16.8%

29.0% 22245 31.4%
36.5%

4 495 35.4%
39.4% 13314 13.9%

25.7% 32817 26.6%
33.8%

AGMNC [WFP+24]
AND-XOR23 6

1 33 3.0%
12.1% 3967 52.7%

54.5% 5267 40.5%
44.0%

2 99 3.0%
3.0% 9078 54.0%

57.3% 12978 38.7%
41.0%

3 198 3.0%
3.0% 16239 52.7%

59.6% 24040 36.6%
41.2%

4 330 3.0%
9.1% 25469 55.0%

61.2% 38471 37.4%
43.6%

Handcrafting [MCS22]
HPC22 6

1 34 5.9%
14.7% 3213 41.6%

43.8% 4552 31.1%
35.2%

2 102 5.9%
5.9% 6705 37.7%

42.1% 10723 25.8%
28.5%

3 204 5.9%
5.9% 11515 33.2%

43.0% 19552 22.0%
27.7%

AGEMA [KMMS22]
HPC1 Optimized

Pipelined1
8

1 68 52.9%
57.4% 4263 56.0%

57.6% 6942 54.8%
57.5%

2 170 43.5%
43.5% 7839 46.7%

50.5% 14537 45.3%
47.3%

3 340 43.5%
43.5% 12085 36.4%

45.7% 25481 40.1%
44.6%

4 510 37.3%
41.2% 16919 32.2%

41.5% 37013 35.0%
41.3%

AGEMA [KMMS22]
HPC2 Optimized

Pipelined1
8

1 34 5.9%
14.7% 5339 64.9%

66.2% 6678 53.0%
55.8%

2 102 5.9%
5.9% 11205 62.7%

65.4% 15223 47.7%
49.7%

3 204 5.9%
5.9% 19217 60.0%

65.8% 27254 44.0%
48.2%

4 340 5.9%
11.8% 29267 60.8%

66.2% 42663 43.6%
49.1%

1 Synthesized with Yosys to the NanGate45 design kit.
2 Synthesized with Cadence to the TSMC-N65 design kit.
3 Synthesized with Synopsys to the NanGate45 design kit.

designs are neck-and-neck with the well-known DOM design by Gross et al. [GMK16].
Importantly, DOM does not provide any composition guarantees, and constructs like the
DOM-dep gadget have been shown to be trivially insecure by Moos et al. [MMSS19].

Masking schemes using dual-rail pre-charge logic such as LMDPL [SBHM20] or
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Table 3: Area and randomness cost of state-of-the-art masked AES S-Boxes, annotated
with percentages showing how much cost is saved by the All-HPC3.1 design (black) and
the HPC1-middle-HPC1-back design (gray), cf. Table 2.

Method AES S-Box Latency
(cycles)

d
Random
bits

Area (GE)

standalone with PRNG

TI

[CRB+16]S1 6 1 54 40.7%
46.3% 1872 −0.2%

3.5% 3999 21.6%
26.3%

2 162 40.7%
40.7% 3662 −14.0%

−6.0% 10044 20.8%
23.7%

[UHA17]S5 6 1 64 50.0%
54.7% 1342 −39.8%

−34.6% 3863 18.8%
23.7%

[BGN+15]S2 4 1 32 0.0%
9.4% 2224 15.7%

18.8% 3484 10.0%
15.4%

DOM [GMK16]C2 5 1 18 −77.8%
−61.1% 2600 27.9%

30.5% 3309 5.2%
10.9%

2 54 −77.8%
−77.8% 5300 21.2%

26.8% 7427 −7.2%
−3.2%

LMDPL [SBHM20]S4 1 1 36 11.1%
19.4% 3480 46.1%

48.1% 4898 36.0%
39.8%

SESYM

[NGPM22]C3 BP 1 1 34 5.9%
14.7% 3980 52.9%

54.6% 5319 41.0%
44.6%

2 102 5.9%
5.9% 9340 55.3%

58.5% 13358 40.4%
42.6%

[NGPM22]C3 C 1 1 18 −77.8%
−61.1% 7590 75.3%

76.2% 8299 62.2%
64.5%

2 51 −88.2%
−88.2% 14780 71.7%

73.7% 16789 52.6%
54.4%

C Synthesized with Cadence S Synthesized with Synopsys
1 NanGate45 design kit
2 UMC 180nm design kit

3 UMC 65nm design kit
4 GF 28nm design kit

5 TSMC-N65 design kit

SESYM [NGPM22] offer very low latency overheads of only one clock cycle. While this does
use more area than HPC-based designs like ours, it is nevertheless a viable and performant
alternative. However, they do rely on stronger assumptions about the physical properties
of circuits, some of which have recently been questioned by Müller et al. [MLM24].

8 Conclusion
This paper improves the trivially composable masking of the AES S-Box through innovations
on several fronts, from better F28 and F24 inverter designs, an improved HPC3.1 gadget for
masked multiplications in arbitrary finite fields, all the way to sound mask reuse reducing
the randomness cost. The resulting designs show a clear improvement over state-of-the-art
masked AES S-Box designs, be it in latency, randomness cost or area. However, we argue
that our contributions are not limited to the masked AES S-Box only; and most are of
independent interest for both masked and unmasked hardware designs in general. We have
shown how algebraic rewriting can be used to reduce multiplicative depth, yielding lower
latencies for masked hardware designs, and potentially lower intra-clock cycle delays of
unmasked implementations. Moreover, the generality of the HPC3.1 gadget could lend
itself for low-latency masking of other cryptographic primitives that work with finite-field
representations, e.g., Dilithium [DKL+18] or Kyber [BDK+18]. Similarly, we think that
the sound reuse of randomness presented in this paper represents a crucial step towards
low-randomness masked implementations that are d-PINI in the glitch-extended probing
model, and could positively affect the masking of most cryptographic primitives, especially
in the domain of lightweight symmetric cryptography.
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Algorithm 5: Generic HPC3.2 multiplication gadget
Input : Sharing 〈A0, . . . , Ad〉 ∈ Fd+1

q of A ∈ Fq ,
sharing 〈B0, . . . , Bd〉 ∈ Fd+1

q of B ∈ Fq ,
masks 〈Ri,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q ,
masks 〈Pi,j | 0 ≤ i < j ≤ d〉 ∈ Fd(d+1)/2

q

Output : Sharing 〈C0, . . . , Cd〉 ∈ Fd+1
q of C = A ·B

1 for i from 0 to d do
2 for j from i+ 1 to d do
3 Rj,i ← Ri,j , Pj,i ← −Pi,j ; // Randomness aliases
4 for i from 0 to d do
5 for j from 0 to d with j 6= i do
6 Vi,j ← Ri,j +Bj ; // Blinded multiplicands
7 if j ≡ i+ 1 mod d+ 1 then
8 Wi,j ← Pi,j −Ai · (Ri,j −Bi) ; // Special correction terms
9 else

10 Wi,j ← Pi,j −Ai ·Ri,j ; // Normal correction terms

11 Ci = Reg (Ai) ·
(∑

j∈[0,d]\{i}Reg (Vi,j)
)

+
(∑

j∈[0,d]\{i}Reg (Wi,j)
)
;

12 return 〈C0, . . . , Cd〉;

A HPC3.2 – An Even Better Multiplication Gadget
As mentioned in Section 7, one can adapt the rewrite trick from HPC3o to HPC3.1, which
we missed during its initial design process and subsequent d-PINI proof. Algorithm 5
shows a gadget called HPC3.2 that incorporates a HPC3o-style cancellation term rewrite
into HPC3.1. Let i′ = i+ 1 mod d+ 1. In HPC3.2 the Ai ·Bi term becomes a summand
of Ci through Wi,i′ because

Wi,i′ = Pi,i′ −Ai · (Ri,i′ −Bi) = Pi,i′ −Ai ·Ri,i′ +Ai ·Bi, (16)

compared to HPC3.1, where it becomes a summand of Ci through Ai ·
∑d

j=0 Vi,j with
Vi,i = Bi. All other parts of HPC3.2 stay the same as in HPC3.1.

In addition to saving (d + 1) field element registers, this change also saves (d + 1)
field additions for F2n where field element negation is the identity operation due to
Ri,j −Bi = Ri,j +Bi which is shared with Vi,j , and thus saved.

The d-PINI proof for HPC3.2 is the same as in Theorem 1, except that Wi′,j must
be handled more carefully, but otherwise behaves the same as any other Wi,j . Moreover,
randomness reuse across HPC3.2 gadgets works the same as for HPC3.1 gadgets.

B Bit-level AES S-Box Using the New F28 Inverter
In the following, we give a bit-level implementation of the AES S-Box which breaks
Boyar and Peralta’s [BP10] record for the shallowest AES S-Box implementation. Their
implementation has a gate depth of 16, while our design has a gate depth of 14, while only
mildly increasing the circuit size. Our construction is based on the new F28 inverter shown
in Figure 3, where all operations are broken down into their bit-level variants. This leaves
us with the structure depicted in Figure 5.

In the following, we apply an optimization method inspired by Stoffelen [Sto16] to
the linear layers of the three-stage S-Box, and report the results. Using this SAT-based
method, we found an S-Box design with 132 gates and gate depth 19, another circuit with
134 gates and gate depth 15, as well as a circuit with 139 gates and gate depth 14. This
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Algorithm 6: A bit-level implementation of AES S-Box with gate depth of 14
Input : 〈x0, x1, x2, x3, x4, x5, x6, x7〉
Output : 〈y0, y1, y2, y3, y4, y5, y6, y7〉
// L0 layer

1 p0 ← x1 ⊕ x3;
2 p1 ← x5 ⊕ x6;
3 b4 ← x0 ⊕ p1;
4 p2 ← x2 ⊕ x5;
5 a7 ← x2 ⊕ x7;
6 a0 ← x4 ⊕ b4;
7 a5 ← x1 ⊕ x7;
8 a6 ← x4 ⊕ x7;
9 a8 ← x2 ⊕ x4;

10 b2 ← p0 ⊕ a6;
11 b5 ← p0 ⊕ p2;
12 c0 ← x7 ⊕ b5;
13 p3 ← x2 ⊕ a5;
14 b7 ← p1 ⊕ b2;
15 a4 ← x1 ⊕ b4;
16 b8 ← p2 ⊕ a6;
17 a3 ← x7 ⊕ b4;
18 c1 ← x1 ⊕ c0;
19 b6 ← p1 ⊕ b5;
20 a2 ← x4 ⊕ p3;
21 b1 ← x0 ⊕ b2;
22 b3 ← b4 ⊕ b5;
23 c2 ← a7 ⊕ b7;
24 c3 ← a6 ⊕ b6;
25 a1 ← b4 ⊕ p3;

// N0 layer
26 d0 ← a0 ∧ x0;
27 d1 ← a1 ∧ b1;
28 d2 ← a2 ∧ b2;
29 d3 ← a3 ∧ b3;
30 d4 ← a4 ∧ b4;
31 d5 ← a5 ∧ b5;
32 d6 ← a6 ∧ b6;
33 d7 ← a7 ∧ b7;
34 d8 ← a8 ∧ b8;

// L1 layer

35 q0 ← d6 ⊕ d2;
36 q1 ← d7 ⊕ d3;
37 q2 ← q0 ⊕ q1;
38 q3 ← d1 ⊕ c3;
39 q4 ← d8 ⊕ q0;
40 e4 ← q3 ⊕ q4;
41 q5 ← d5 ⊕ d2;
42 q6 ← c0 ⊕ q5;
43 q7 ← d4 ⊕ c1;
44 q8 ← d3 ⊕ c0;
45 e0 ← q2 ⊕ q6;
46 q9 ← q5 ⊕ q7;
47 q10 ← d0 ⊕ c2;
48 q11 ← d7 ⊕ d8;
49 e1 ← q4 ⊕ q9;
50 q12 ← d3 ⊕ q10;
51 e7 ← q3 ⊕ q9;
52 e3 ← q2 ⊕ q12;
53 e6 ← q6 ⊕ q12;
54 q13 ← q3 ⊕ q10;
55 e5 ← q11 ⊕ q13;
56 q14 ← q7 ⊕ q8;
57 e8 ← q13 ⊕ q14;
58 e2 ← q11 ⊕ q14;

// N1 layer
59 f0 ← a0 ∧ e0;
60 f1 ← a1 ∧ e1;
61 f2 ← a2 ∧ e2;
62 f3 ← a3 ∧ e3;
63 f4 ← a4 ∧ e4;
64 f5 ← a5 ∧ e5;
65 f6 ← a6 ∧ e6;
66 f7 ← a7 ∧ e7;
67 f8 ← a8 ∧ e8;
68 g0 ← x0 ∧ e0;
69 g1 ← b1 ∧ e1;
70 g2 ← b2 ∧ e2;

71 g3 ← b3 ∧ e3;
72 g4 ← b4 ∧ e4;
73 g5 ← b5 ∧ e5;
74 g6 ← b6 ∧ e6;
75 g7 ← b7 ∧ e7;
76 g8 ← b8 ∧ e8;
77 h0 ← e0 ∧ e3;
78 h1 ← e1 ∧ e4;
79 h2 ← e2 ∧ e5;

// LS
2 layer

80 r0 ← f1 ⊕ f8;
81 r1 ← f0 ⊕ f7;
82 r2 ← f2 ⊕ f6;
83 i0 ← r1 ⊕ r2;
84 r3 ← f4 ⊕ f8;
85 i1 ← r0 ⊕ r2;
86 r4 ← f3 ⊕ f7;
87 i5 ← r3 ⊕ r4;
88 i2 ← r0 ⊕ r1;
89 r5 ← f5 ⊕ f6;
90 i4 ← r3 ⊕ r5;
91 i3 ← r4 ⊕ r5;

// LS
2 layer

92 s0 ← g1 ⊕ g8;
93 s1 ← g0 ⊕ g7;
94 s2 ← g2 ⊕ g6;
95 j0 ← s1 ⊕ s2;
96 s3 ← g4 ⊕ g8;
97 j1 ← s0 ⊕ s2;
98 s4 ← g3 ⊕ g7;
99 j5 ← s3 ⊕ s4;

100 j2 ← s0 ⊕ s1;
101 s5 ← g5 ⊕ g6;
102 j4 ← s3 ⊕ s5;
103 j3 ← s4 ⊕ s5;

// LM
2 layer

104 t0 ← e7 ⊕ h1;

105 k0 ← h2 ⊕ t0;
106 t1 ← e8 ⊕ h0;
107 k2 ← t0 ⊕ t1;
108 k1 ← h2 ⊕ t1;

// N2 layer
109 l0 ← k0 ∧ i0;
110 l1 ← k1 ∧ i1;
111 l2 ← k2 ∧ i2;
112 l3 ← k0 ∧ i3;
113 l4 ← k1 ∧ i4;
114 l5 ← k2 ∧ i5;
115 m0 ← k0 ∧ j0;
116 m1 ← k1 ∧ j1;
117 m2 ← k2 ∧ j2;
118 m3 ← k0 ∧ j3;
119 m4 ← k1 ∧ j4;
120 m5 ← k2 ∧ j5;

// L3 layer
121 u0 ← l0 ⊕ l1;
122 u1 ← m0 ⊕m2;
123 u2 ← m4 ⊕m5;
124 u3 ← l3 ⊕ l5;
125 u4 ← l1 ⊕ l2;
126 u5 ← m1 ⊕m2;
127 u6 ← m3 ⊕m4;
128 u9 ← l4 ⊕ l5;
129 u7 ← u0 ⊕ u3;
130 u8 ← u1 ⊕ u2;
131 u10 ← u1 ⊕ u6;
132 y7 ← u2 ⊕ u4;
133 y6 ← u4 	 u5;
134 y5 ← u1 	 u3;
135 y4 ← u5 ⊕ y7;
136 y3 ← y6 	 u10;
137 y2 ← u7 ⊕ u8;
138 y1 ← u6 	 u9;
139 y0 ← u8 ⊕ y1;

disproves the conjecture made by Boyar and Peralta [BP12] stating that small designs with
a gate depth less than 16 are unlikely. In fact, our shallowest design has a gate depth of
14 and is only 11 gates larger than their design of 128 gates and a gate depth of 16, while
using the same gate basis of And, Xor and Xnor. We show this circuit in Algorithm 6.

B.1 Optimizing L3

L3 is the last linear layer of the S-Box, separated from the others by the last layer of
And gates, and maps two 6-bit inputs to the 8-bit output of the S-Box. Optimizing with
the greedy method proposed by Boyar and Peralta et al. [BP10] yields a deep circuit
with 19 gates. Applying a SAT-based search yields no circuits with arbitrary gate depth
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Figure 5: Structure of the AES S-Box with And-depth of three. The � operations
represent a pointwise n × n bit multiplication and consist of n And gates. The linear
layers L0, L1, LS

2 , LM
2 and L3 only contain Xor and Xnor gates.

and only 18 gates, but also does not disprove the possibility of such a circuit within a
reasonable time. Therefore, we conjecture that L3 needs at least 19 linear gates, and
continue optimizing the gate depth. Since each output is the linear combination of at most
six inputs, we know that the best possible gate depth is three. We ran the optimization
method where we declared all inputs to have the same depth, and found a circuit with 19
gates and the optimal gate depth of three.

B.2 Optimizing LS
2 and LM

2

Similar to L3, all the inputs of the linear layer LS
2 are outputs of And gates, so it does not

interact with other linear layers, barring the possibility of cross-layer local optimizations.
The naive implementation of LS

2 , based on the bit-level implementations of F24 and
F22 multiplications, requires 13 Xor gates and has a gate depth of four. SAT-based
optimization yields a smaller circuit with only 12 Xor gates, and proves that no circuits
with less gates are possible. Moreover, the optimal gate depth is two, and is indeed
realizable with only 12 Xor gates.

Layer LM
2 is parallel to LS

2 and has two 3-bit inputs, one of which comes from L1. We
have found a circuit with 5 Xor gates and a gate depth of two, both of which are provably
optimal. Since there is a circuit with both optimal size and gate depth, and the 3-bit input
coming from L1 is also used elsewhere, there seem to be no feasible tradeoffs across the
linear layer boundary to L1.

B.3 Optimizing L0

L0 is the first linear layer and has been extensively studied by Boyar et al. [BP10, BP12].
They have found an implementation with a gate depth of seven and only 23 gates, as well
as an implementation with 27 gates and a gate depth of three. However, while a circuit
for L0 by itself has an optimal gate depth of three, this is not strictly necessary for an
AES S-Box with low gate depth. The 4-bit output that goes to L1 can be relaxed to a
depth of four, because the 9-bit input to L1 has an optimal depth of four due to the And
gates that produce it. We have found a 25 gate circuit, where the two 9-bit outputs of L0
have a gate depth of three, and the 4-bit output has a gate depth of four.

B.4 Optimizing L1

Layer L1 receives a 9-bit input and a 4-bit input. Assuming that they have the same
depth, we optimized for the number of gates, and found circuits with 19 Xor gates and no
solutions with 18 gates within a reasonable time, conjecturing that there are none. With
only 19 Xor gates, the best achievable gate depth seems to be four. Moreover, since the
outputs are a combination of at most eight inputs, a gate depth of three is achievable, and
we have found one such circuit with only 24 Xor gates.
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